We construct in Bell-Kunen's model: (a) a group maximal topology on a countable infinite Boolean group of weight $\aleph_1 < {\frak C}$ and (b) a countable irresolvable dense subspace of $2^{\omega_1}$. In this model ${\frak C}=\aleph_{\omega_1}$.
@article{119072, author = {Viacheslav I. Malykhin}, title = {Irresolvable countable spaces of weight less than $\frak C$}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {40}, year = {1999}, pages = {181-185}, zbl = {1060.54500}, mrnumber = {1715211}, language = {en}, url = {http://dml.mathdoc.fr/item/119072} }
Malykhin, Viacheslav I. Irresolvable countable spaces of weight less than $\frak C$. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) pp. 181-185. http://gdmltest.u-ga.fr/item/119072/
Resolvable spaces which are not maximally resolvable, Bull. Moscow Univ. Ser. Math. Mech. 24 (1969), 66-70. (1969) | MR 0256331 | Zbl 0183.51204
On the $\pi$-character of ultrafilters, C.R. Math. Rep. Acad. Sci. Canada 3 (1981), 351-356. (1981) | MR 0642449 | Zbl 0475.54001
A problem of set-theoretic topology, Duke Math. J. 10 (1943), 309-333. (1943) | MR 0008692 | Zbl 0060.39407
Set Theory, The Introduction to Independence Proofs, North Holland Publ. Co. Amsterdam-New York, 1980. | MR 0597342
Extremaly disconnected and nearly extremaly disconnected groups, Soviet Math. Dokl. 16 (1975), 21-25. (1975)