On generalized games in $H$-spaces
Cubiotti, Paolo ; Nordo, Giorgio
Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999), p. 175-180 / Harvested from Czech Digital Mathematics Library

We show that a recent existence result for the Nash equilibria of generalized games with strategy sets in $H$-spaces is false. We prove that it becomes true if we assume, in addition, that the feasible set of the game (the set of all feasible multistrategies) is closed.

Publié le : 1999-01-01
Classification:  54H99,  90D06,  90D10,  91A40,  91A44
@article{119071,
     author = {Paolo Cubiotti and Giorgio Nordo},
     title = {On generalized games in $H$-spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {40},
     year = {1999},
     pages = {175-180},
     zbl = {1059.91502},
     mrnumber = {1715210},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119071}
}
Cubiotti, Paolo; Nordo, Giorgio. On generalized games in $H$-spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) pp. 175-180. http://gdmltest.u-ga.fr/item/119071/

Aubin J.P. Optima and Equilibria, Springer-Verlag, Berlin, 1993. | MR 1217485 | Zbl 0930.91001

Aubin J.P.; Frankowska H. Set-Valued Analysis, Birkhäuser, Boston, 1990. | MR 1048347 | Zbl 1168.49014

Bardaro C.; Ceppitelli R. Some further generalizations of Knaster-Kuratowski-Mazurkiewicz theorem and minimax inequalities, J. Math. Anal. Appl. 132 (1988), 484-490. (1988) | MR 0943521 | Zbl 0667.49016

Bardaro C.; Ceppitelli R. Applications of the generalized Knaster-Kuratowski-Mazurkiewicz theorem to variational inequalities, J. Math. Anal. Appl. 137 (1989), 46-58. (1989) | MR 0981922

Bardaro C.; Ceppitelli R. Fixed point theorems and vector-valued minimax theorems, J. Math. Anal. Appl. 146 (1990), 363-373. (1990) | MR 1043106 | Zbl 0698.49011

Cubiotti P. Existence of solutions for lower semicontinuous quasi-equilibrium problems, Comput. Math. Applic. 30 (12) (1995), 11-22. (1995) | MR 1360323 | Zbl 0844.90094

Harker P.T. Generalized Nash games and quasi-variational inequalities, European J. Oper. Res. 54 (1991), 81-94. (1991) | Zbl 0754.90070

Huang Y. Fixed point theorems with an application in generalized games, J. Math. Anal. Appl. 186 (1994), 634-642. (1994) | MR 1293845 | Zbl 0814.54029

Klein E.; Thompson A.C. Theory of Correspondences, John Wiley and Sons, New York, 1984. | MR 0752692 | Zbl 0556.28012

Tian G.; Zhou J. The Maximum theorem and the existence of Nash equilibria of (generalized) games without lower semicontinuities, J. Math. Anal. Appl. 166 (1992), 351-364. (1992) | MR 1160931