We show that a recent existence result for the Nash equilibria of generalized games with strategy sets in $H$-spaces is false. We prove that it becomes true if we assume, in addition, that the feasible set of the game (the set of all feasible multistrategies) is closed.
@article{119071, author = {Paolo Cubiotti and Giorgio Nordo}, title = {On generalized games in $H$-spaces}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {40}, year = {1999}, pages = {175-180}, zbl = {1059.91502}, mrnumber = {1715210}, language = {en}, url = {http://dml.mathdoc.fr/item/119071} }
Cubiotti, Paolo; Nordo, Giorgio. On generalized games in $H$-spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) pp. 175-180. http://gdmltest.u-ga.fr/item/119071/
Optima and Equilibria, Springer-Verlag, Berlin, 1993. | MR 1217485 | Zbl 0930.91001
Set-Valued Analysis, Birkhäuser, Boston, 1990. | MR 1048347 | Zbl 1168.49014
Some further generalizations of Knaster-Kuratowski-Mazurkiewicz theorem and minimax inequalities, J. Math. Anal. Appl. 132 (1988), 484-490. (1988) | MR 0943521 | Zbl 0667.49016
Applications of the generalized Knaster-Kuratowski-Mazurkiewicz theorem to variational inequalities, J. Math. Anal. Appl. 137 (1989), 46-58. (1989) | MR 0981922
Fixed point theorems and vector-valued minimax theorems, J. Math. Anal. Appl. 146 (1990), 363-373. (1990) | MR 1043106 | Zbl 0698.49011
Existence of solutions for lower semicontinuous quasi-equilibrium problems, Comput. Math. Applic. 30 (12) (1995), 11-22. (1995) | MR 1360323 | Zbl 0844.90094
Generalized Nash games and quasi-variational inequalities, European J. Oper. Res. 54 (1991), 81-94. (1991) | Zbl 0754.90070
Fixed point theorems with an application in generalized games, J. Math. Anal. Appl. 186 (1994), 634-642. (1994) | MR 1293845 | Zbl 0814.54029
Theory of Correspondences, John Wiley and Sons, New York, 1984. | MR 0752692 | Zbl 0556.28012
The Maximum theorem and the existence of Nash equilibria of (generalized) games without lower semicontinuities, J. Math. Anal. Appl. 166 (1992), 351-364. (1992) | MR 1160931