A class of convex functions where the sets of subdifferentials behave like the unit ball of the dual space of an Asplund space is found. These functions, which we called Asplund functions also possess some stability properties. We also give a sufficient condition for a function to be an Asplund function in terms of the upper-semicontinuity of the subdifferential map.
@article{119067, author = {Wee-Kee Tang}, title = {On Asplund functions}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {40}, year = {1999}, pages = {121-132}, zbl = {1060.46505}, mrnumber = {1715206}, language = {en}, url = {http://dml.mathdoc.fr/item/119067} }
Tang, Wee-Kee. On Asplund functions. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) pp. 121-132. http://gdmltest.u-ga.fr/item/119067/
On upper semicontinuity of duality mappings, Proc. Amer. Math. Soc. 112 (1994), 451-459. (1994) | MR 1215199
Smoothness and Renormings in Banach Spaces, Pitman Monograph and Survey in Pure and Applied Mathematics \bf{64}. | MR 1211634 | Zbl 0782.46019
A note on trees in conjugate Banach spaces, Indag. Math. 46 (1984), 7-10. (1984) | MR 0748973 | Zbl 0537.46025
Banach spaces which are Asplund spaces, Duke Math J. 42 (1975), 735-749. (1975) | MR 0390721 | Zbl 0332.46013
On projectional resolution of identity on the duals of certain Banach spaces, Bull. Austral. Math. Soc. 35 (1987), 363-371. (1987) | MR 0888895
Some applications of Simons' inequality, Sem. Funct. Anal., University of Murcia, to appear. | MR 1767034
On the characterisation of Asplund spaces, J. Austral. Math. Soc. (Ser. A) 32 (1982), 134-144. (1982) | MR 0643437 | Zbl 0486.46019
Geometric implications of upper semi-continuity of the duality mapping on a Banach space, Pacific J. Math. 79 (1978), 99-109. (1978) | MR 0526669
Separable determination of Fréchet differentiability of convex functions, Bull. Austral. Math. Soc. 52 (1995), 161-167. (1995) | MR 1344269 | Zbl 0839.46036
$\sigma $-fragmentable Banach spaces, Mathematika 39 (1992), 161-188. (1992) | MR 1176478 | Zbl 0761.46009
Convex Functions, Monotone Operators and Differentiability, Lect. Notes. in Math., Springer-Verlag 1364 (1993) (Second Edition). | MR 1238715 | Zbl 0921.46039
Gâteaux differentiable functions are somewhere Fréchet differentiable, Rend. Cir. Mat. Pal. 33 (1984), 122-133. (1984) | MR 0743214 | Zbl 0573.46024
Fréchet differentiability of convex functions in Banach space with separable duals, Proc. Amer. Math. Soc. 91 (1984), 202-204. (1984) | MR 0740171
A convergence theorem with boundary, Pacific J. Math. 40 (1972), 703-708. (1972) | MR 0312193 | Zbl 0237.46012
The Radon-Nikodym property in conjugate Banach spaces, Trans. Amer. Math. Soc. 206 (1975), 213-223. (1975) | MR 0374381 | Zbl 0318.46056
On Fréchet differentiability of convex functions on Banach spaces, Comment. Math. Univ. Carolinae 36 (1995), 249-253. (1995) | MR 1357526 | Zbl 0831.46045
Sets of differentials and smoothness of convex functions, Bull. Austral. Math. Soc. 52 (1995), 91-96. (1995) | MR 1344263 | Zbl 0839.46008
Asplund spaces for beginners, Acta Univ. Carolinae 34 (1993), 159-177. (1993) | MR 1282979 | Zbl 0815.46022