On infinite dimensional uniform smoothness of Banach spaces
Prus, Stanisław
Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999), p. 97-105 / Harvested from Czech Digital Mathematics Library

An infinite dimensional counterpart of uniform smoothness is studied. It does not imply reflexivity, but we prove that it gives some $l_p$-type estimates for finite dimensional decompositions, weak Banach-Saks property and the weak fixed point property.

Publié le : 1999-01-01
Classification:  46B20,  47H10
@article{119065,
     author = {Stanis\l aw Prus},
     title = {On infinite dimensional uniform smoothness of Banach spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {40},
     year = {1999},
     pages = {97-105},
     zbl = {1060.46504},
     mrnumber = {1715204},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119065}
}
Prus, Stanisław. On infinite dimensional uniform smoothness of Banach spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) pp. 97-105. http://gdmltest.u-ga.fr/item/119065/

Banaś J. Compactness conditions in the geometric theory of Banach spaces, Nonlinear Anal. 16 (1990), 669-682. (1990) | MR 1097324

Banaś J.; Fraczek K. Conditions involving compactness in geometry of Banach spaces, Nonlinear Anal. 20 (1993), 1217-1230. (1993) | MR 1219238

Banaś J.; Goebel K. Measures of Noncompactness in Banach Spaces, Marcel Dekker New York (1980). (1980) | MR 0591679

Van Dulst D. Reflexive and Superreflexive Banach Spaces, Mathematisch Centrum Amsterdam (1978). (1978) | MR 0513590 | Zbl 0412.46006

García Falset J. Stability and fixed points for nonexpansive mappings, Houston J. Math 20 (1994), 495-505. (1994) | MR 1287990

García Falset J. The fixed point property in Banach spaces with NUS-property, preprint.

Goebel K.; Sȩkowski T. The modulus of noncompact convexity, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 38 (1984), 41-48. (1984) | MR 0856623

Huff R. Banach spaces which are nearly uniformly convex, Rocky Mountain J. Math. 10 (1980), 743-749. (1980) | MR 0595102 | Zbl 0505.46011

James R.C. Bases and reflexivity of Banach spaces, Ann. of Math. 52 (1950), 518-527. (1950) | MR 0039915 | Zbl 0039.12202

James R.C. Uniformly non-square Banach spaces, Ann. of Math. 80 (1964), 542-550. (1964) | MR 0173932 | Zbl 0132.08902

James R.C. Super-reflexive spaces with bases, Pacific J. Math. 41 (1972), 409-419. (1972) | MR 0308752 | Zbl 0235.46031

Johnson W.B.; Zippin M. On subspaces of quotients of ${(\sum G_n)}_{l_p}$ and ${(\sum G_n)}_{c_0}$, Israel J. Math. 13 (1972), 311-316. (1972) | MR 0331023

Lindenstrauss J.; Tzafriri L. Classical Banach Spaces I. Sequence Spaces, Springer-Verlag New York (1977). (1977) | MR 0500056 | Zbl 0362.46013

Prus S. Nearly uniformly smooth Banach spaces, Boll. U.M.I. (7) 3-B (1989), 507-521. (1989) | MR 1010520

Prus S. Banach spaces and operators which are nearly uniformly convex, to appear. | MR 1444685 | Zbl 0886.46017

Rosenthal H.P. A characterization of Banach spaces containing $l_1$, Proc. Nat. Acad. Sci. (USA) 71 (1974), 2411-2413. (1974) | MR 0358307 | Zbl 0297.46013

Sȩkowski T.; Stachura A. Noncompact smoothness and noncompact convexity, Atti. Sem. Mat. Fis. Univ. Modena 36 (1988), 329-338. (1988) | MR 0976047

Zippin M. A remark on bases and reflexivity in Banach spaces, Israel J. Math. 6 (1968), 74-79. (1968) | MR 0236677 | Zbl 0157.20101