The aim of this paper is to present an existence theorem for the operator equation of Hammerstein type $x+KF(x)=0$ with the discontinuous semimonotone operator $F$. Then the result is used to prove the existence of solution of the equations of Urysohn type. Some examples in the theory of nonlinear equations in $L_p(\Omega )$ are given for illustration.
@article{119060, author = {Nguyen Buong}, title = {Equations with discontinuous nonlinear semimonotone operators}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {40}, year = {1999}, pages = {7-12}, zbl = {1060.47509}, mrnumber = {1715199}, language = {en}, url = {http://dml.mathdoc.fr/item/119060} }
Buong, Nguyen. Equations with discontinuous nonlinear semimonotone operators. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) pp. 7-12. http://gdmltest.u-ga.fr/item/119060/
Ein Existenz und Eindeutigkeitssatz fur die Hammersteinshe Gleichung in Banachraumen, Math. Z. 111 (1969), 175-190. (1969) | MR 0254687
Uber die naherungsweise Losung nichlinearer Integralgleichungen, Numer. Math. 19 (1972), 29-45. (1972) | MR 0303772
Nonlinear integral equations and systems of Hammerstein's type, Adv. Math. 10 (1975), 115-144. (1975) | MR 0394341
Méthod d'approximation et d'itération pour les opérateurs monotones, Arch. Rat. Mech. Anal. 28 (1968), 1 59-82. (1968) | MR 0220110
On solution of the operator equation of Hammerstein type with semimonotone and discontinuous nonlinearity (in Vietnamese), J. Math. 12 (1984), 25-28. (1984)
On approximate solutions of Hammerstein equation in Banach spaces (in Russian), Ukrainian Math. J. 8 (1985), 1256-1260. (1985)
On integral inclusion of Hammerstein (in Russian), Sibirian Math. J. 21 (1980), 2 19-24. (1980) | MR 0569173
Numerical solvability of Hammerstein equations of mixed type, IMA J. Numer. Anal. 11 (1991), 21-31. (1991) | MR 1089546
Nonlinear equations of Urysohn's type in a Banach space, Comment. Math. Univ. Carolinae 16 (1975), 377-386. (1975) | MR 0500344 | Zbl 0326.47058
Systems of Automatic Control with Variable Structure (in Russian), Moscow, Nauka, 1967.
Existence theorem for a generalized Hammerstein type equation, Comment. Math. Univ. Carolinae 15 (1974), 283-291. (1974) | MR 0348569 | Zbl 0291.47034
On elliptic equations with discontinuous nonlinearities (in Russian), Dokl. AN RSPP 342 (1995), 6 731-734. (1995) | MR 1346871
Nonlinear equations with discontinuous operators in Banach space (in Russian), Ukrainian Math. J. 31 (1979), 5 569-572. (1979) | MR 0552495
Existence of solution for nonlinear equations involving discontinuous semimonotone operators (in Russian), Ukrainian Math. J. 33 (1981), 4 547-551. (1981)
Concerning an existence problem for solution of Hammerstein equation with discontinuous mappings (in Russian), Izvestia Vukov, Math. (1975), 10 62-70. (1975)
Monotone Operators and Applications in Control and Network Theory, Elsevier, Amsterdam-Oxford-New York, 1979. | MR 0554232 | Zbl 0425.93002
Variational Method and Method of Monotone Operators (in Russian), Moscow, Nauka, 1972. | MR 0467427