The main purpose of this note is to give a new characterization of the well-known Carleson measure in terms of the integral for $BMOA$ functions with their derivatives on the unit ball.
@article{119052, author = {Hasi Wulan}, title = {A Carleson inequality for $BMOA$ functions with their derivatives on the unit ball}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {39}, year = {1998}, pages = {777-784}, zbl = {1060.32500}, mrnumber = {1715466}, language = {en}, url = {http://dml.mathdoc.fr/item/119052} }
Wulan, Hasi. A Carleson inequality for $BMOA$ functions with their derivatives on the unit ball. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) pp. 777-784. http://gdmltest.u-ga.fr/item/119052/
An interpolation problem for bounded analytic functions, Carleson L. Amer. J. Math. 80 (1958), 921-930. (1958)
Interpolation by bounded analytic functions and the corona problem, Carleson L. Ann. of Math. 76(2) (1962), 547-559. (1962)
$VMOA$ and vanishing Carleson measures, Chee P.S. Complex Variables Theory Appl. 25 (1994), 311-322. (1994)
$L^p$-estimates for (pluri-)subharmonic functions, Hörmander L. Math. Scand. 20 (1967), 65-78. (1967)
Two Carleson measure theorems for Hardy spaces, Jevtić M. Proc. of the Koniklijke Nederlande Akademie van Wetenschappen Ser. A. 92 (1989), 315-321. (1989)
Forward and reverse Carleson inequalities for functions in Bergman spaces and their derivatives, Luecking H. Amer. J. Math. 107 (1985), 85-111. (1985)
Function theory in the unit ball in $\Cal C^n$, Rudin W. Springer Berlin (1980). (1980)
Carleson inequalities for Bergman spaces and Bloch spaces in the unit ball of $\Cal C^n$, Wulan H. Chinese Ann. Math. Ser. A 15(3) (1994), 352-358. (1994)
The Bergman spaces, the Bloch spaces, and Gleason's problem, Zhu K.H. Trans. Amer. Math. Soc. 309 (1988), 253-268. (1988)