The dual space of a WUR Banach space is weakly K-analytic.
@article{119049, author = {An\'\i bal Molt\'o and Vicente Montesinos and Jos\'e Orihuela and Stanimir L. Troyanski}, title = {Weakly uniformly rotund Banach spaces}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {39}, year = {1998}, pages = {749-753}, zbl = {1060.46502}, mrnumber = {1715463}, language = {en}, url = {http://dml.mathdoc.fr/item/119049} }
Moltó, Aníbal; Montesinos, Vicente; Orihuela, José; Troyanski, Stanimir L. Weakly uniformly rotund Banach spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) pp. 749-753. http://gdmltest.u-ga.fr/item/119049/
On K-analytic locally convex spaces, Arch. Math. 49 (1987), 232-244. (1987) | MR 0906738 | Zbl 0617.46014
A sequential property of set-valued maps, J. Math. Anal. Appl. 156 (1991), 86-100. (1991) | MR 1102599 | Zbl 0760.54013
Smoothness and Renormings in Banach Spaces, Longman Scientific and Technical, 1993. | MR 1211634 | Zbl 0782.46019
The dual of every Asplund admits a projectional resolution of the identity, Studia Math. 91 (1988), 141-151. (1988) | MR 0985081
On uniform Eberlein compacta and uniformly Gâteaux smooth norms, Serdica Math. J. 23 (1997), 1001-1010. (1997) | MR 1660997
A Banach space admits a locally uniformly rotund norm if its dual is a Vasšák space, Israel J. Math. 69 (1990), 214-224. (1990) | MR 1045374
Smoothness in weakly compactly generated Banach spaces, J. Functional Anal. 52 (1983), 344-352. (1983) | MR 0712585 | Zbl 0517.46010
Dual renormings of Banach spaces, Comment. Math. Univ. Carolinae 37 (1996), 241-253. (1996) | MR 1398999
Espaces de Banach faiblement K-analytiques, Annals of Math. 110 (1979), 407-438. (1979) | MR 0554378