Existence of nonzero nonnegative solutions of semilinear equations at resonance
Fečkan, Michal
Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998), p. 709-719 / Harvested from Czech Digital Mathematics Library

The existence of nonzero nonnegative solutions are established for semilinear equations at resonance with the zero solution and possessing at most linear growth. Applications are given to nonlinear boundary value problems of ordinary differential equations.

Publié le : 1998-01-01
Classification:  34B15,  47H07,  47J05
@article{119046,
     author = {Michal Fe\v ckan},
     title = {Existence of nonzero nonnegative solutions of semilinear equations at resonance},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {39},
     year = {1998},
     pages = {709-719},
     zbl = {1060.47510},
     mrnumber = {1715460},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119046}
}
Fečkan, Michal. Existence of nonzero nonnegative solutions of semilinear equations at resonance. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) pp. 709-719. http://gdmltest.u-ga.fr/item/119046/

Gaines R.E.; Santanilla J. A coincidence theorem in convex sets with applications to periodic solutions of ordinary differential equations, Rocky Mountain J. Math. 12 (1982), 669-678. (1982) | MR 0683861 | Zbl 0508.34030

Nieto J. Existence of solutions in a cone for nonlinear alternative problems, Proc. Amer. Math. Soc. 94 (1985), 433-436. (1985) | MR 0787888 | Zbl 0585.47050

Przeradzki B. A note on solutions of semilinear equations at resonance in a cone, Ann. Polon. Math. 58 (1993), 95-103. (1993) | MR 1215764 | Zbl 0776.34035

Santanilla J. Existence of nonnegative solutions of a semilinear equation at resonance with linear growth, Proc. Amer. Math. Soc. 105 (1989), 963-971. (1989) | MR 0964462 | Zbl 0687.47045