Given a principal ideal domain $R$ of characteristic zero, containing $1/2$, and a connected differential non-negatively graded free finite type $R$-module $V$, we prove that the natural arrow $ \Bbb{L} {F\kern -0.8pt H}(V) \rightarrow {F\kern -0.8pt H} \Bbb{L} (V)$ is an isomorphism of graded Lie algebras over $R$, and deduce thereby that the natural arrow ${U\kern -1pt F\kern -0.8pt H}\Bbb{L} (V) \rightarrow {F\kern -0.8pt H\kern -0.4pt U} \Bbb{L} (V)$ is an isomorphism of graded cocommutative Hopf algebras over $R$; as usual, $F$ stands for free part, $H$ for homology, $\Bbb{L}$ for free Lie algebra, and $U$ for universal enveloping algebra. Related facts and examples are also considered.
@article{119042, author = {Calin Popescu}, title = {On the homology of free Lie algebras}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {39}, year = {1998}, pages = {661-669}, zbl = {1059.17503}, mrnumber = {1715456}, language = {en}, url = {http://dml.mathdoc.fr/item/119042} }
Popescu, Calin. On the homology of free Lie algebras. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) pp. 661-669. http://gdmltest.u-ga.fr/item/119042/
An $R$-local Milnor-Moore theorem, Adv. Math. 77 (1989), 116-136. (1989) | MR 1014074 | Zbl 0684.55010
Torsion in homotopy groups, Ann. of Math. 109 (1979), 121-168. (1979) | MR 0519355
Homology and fibrations I, Coalgebras, cotensor product and its derived functors, Comment. Math. Helv. 40 (1966), 199-236. (1966) | MR 0203730 | Zbl 0148.43203
Universal enveloping algebras and loop space homology, J. Pure Appl. Algebra 83 (1992), 237-282. (1992) | MR 1194839 | Zbl 0769.57025
A Course in Modern Algebra (especially Chapter 5, Section 4), John Wiley and Sons, Inc., New York, London, Sydney, Toronto, 1974. | MR 0345744
Basic Algebra I (especially Chapter 3), second edition, W.H. Freeman and Co., New York, 1985. | MR 0780184
On the structure of Hopf algebras, Ann. of Math. 81 (1965), 211-264. (1965) | MR 0174052 | Zbl 0163.28202
Non-Isomorphic UHL and HUL, Rapport no. 257, Séminaire Mathématique, Institut de Mathématique, Université Catholique de Louvain, Belgique, February, 1996.
On UHL and HUL, Rapport no. 267, Séminaire Mathématique, Institut de Mathématique, Université Catholique de Louvain, Belgique, December, 1996; to appear in the Bull. Belgian Math. Soc. Simon Stevin. | MR 1705144 | Zbl 1073.17502
Rational homotopy theory, Ann. of Math. 90 (1969), 205-295. (1969) | MR 0258031 | Zbl 0191.53702
The Milnor-Moore theorem in tame homotopy theory, Manuscripta Math. 70 (1991), 227-246. (1991) | MR 1089059
Homotopie Rationnelle: Modèles de Chen, Quillen, Sullivan, LNM 1025, Springer-Verlag, Berlin, Heidelberg, New York, 1982. | MR 0764769