Effect algebras have important applications in the foundations of quantum mechanics and in fuzzy probability theory. An effect algebra that possesses a convex structure is called a convex effect algebra. Our main result shows that any convex effect algebra admits a representation as a generating initial interval of an ordered linear space. This result is analogous to a classical representation theorem for convex structures due to M.H. Stone.
@article{119041, author = {Stanley P. Gudder and Sylvia Pulmannov\'a}, title = {Representation theorem for convex effect algebras}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {39}, year = {1998}, pages = {645-659}, zbl = {1060.81504}, mrnumber = {1715455}, language = {en}, url = {http://dml.mathdoc.fr/item/119041} }
Gudder, Stanley P.; Pulmannová, Sylvia. Representation theorem for convex effect algebras. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) pp. 645-659. http://gdmltest.u-ga.fr/item/119041/
A classical extension of quantum mechanics, J. Phys. A: Math. Gen. 28 (1995), 3329-3343. (1995) | MR 1344371 | Zbl 0859.46049
Quantum observables in classical frameworks, Internat. J. Theoret. Phys. 34 (1995), 1221-1229. (1995) | MR 1353665 | Zbl 0850.81019
Effect algebras and statistical physical theories, to appear. | MR 1449546 | Zbl 0874.06009
Fundamentals of fuzzy probability theory, Internat. J. Theoret. Phys. 35 (1996), 2229-2244. (1996) | MR 1423402 | Zbl 0872.60003
On fuzzy random variables and statistical maps, Rep. Math. Phys., to appear. | MR 1617902 | Zbl 1026.60501
Operational Quantum Physics, Springer-Verlag, Berlin, 1995. | MR 1356220 | Zbl 0863.60106
The Quantum Theory of Measurement, Springer-Verlag, Berlin, 1991. | MR 1176754
Complete effect-preparation structures: attempt of a unification of two different approaches to axiomatic quantum mechanics, Nuovo Cimento 90B (1985), 161-175. (1985) | MR 0827914
Quantum Theory of Open Systems, Academic Press, London, 1976. | MR 0489429 | Zbl 0388.46044
Tensor products of difference posets, Trans. Amer. Math. Soc. 147 (1995), 1043-1057. (1995) | MR 1249874
Difference posets, effects, and quantum measurements, Internat. J. Theoret. Phys. 33 (1994), 819-850. (1994) | MR 1286161
The Perception of Color, John Wiley, New York, 1974.
Effect algebras and unsharp quantum logics, Found. Phys. 24 (1994), 1331-1352. (1994) | MR 1304942
Interval algebras and unsharp quantum logics, to appear.
Toward a formal language for unsharp properties, Found. Phys. 19 (1989), 931-945. (1989) | MR 1013913
Convexity and mixtures, SIAM Review 19 (1977), 221-240. (1977) | MR 0433327 | Zbl 0354.52001
Convex structures and operational quantum mechanics, Comm. Math. Phys. 29 (1973), 249-264. (1973) | MR 0342092
Fuzzy probability theory, Demonstratio Math., to appear. | MR 1623780 | Zbl 0984.60001
Probabilistic and Statistical Aspects of Quantum Theory, North-Holland, Amsterdam, 1982. | MR 0681693 | Zbl 0497.46053
D-posets and fuzzy sets, Tatra Mountains Math. Publ. 1 (1992), 83-87. (1992) | MR 1230466
D-posets, Math. Slovaca 44 (1994), 21-34. (1994) | MR 1290269
States, Effects, and Operations, Springer-Verlag, Berlin, 1983. | MR 0725167 | Zbl 0545.46049
Foundations of Quantum Mechanics, Springer-Verlag, Berlin, 1983. | MR 0690770 | Zbl 0574.46057
Postulates for the barycentric calculus, Ann. Math. 29 (1949), 25-30. (1949) | MR 0036014 | Zbl 0037.25002
Decision Processes, John Wiley, New York, 1954. | MR 0066616 | Zbl 0057.35603
Theory of Games and Economic Behavior, Princeton University Press, Princeton, New Jersey, 1944. | MR 0011937 | Zbl 1112.91002