Recently Hu\v{s}ková (1998) has studied the least squares estimator of a change-point in gradually changing sequence supposing that the sequence increases (or decreases) linearly after the change-point. The present paper shows that the limit behavior of the change-point estimator for more complicated gradual changes is similar. The limit variance of the estimator can be easily calculated from the covariance function of a limit process.
@article{119032, author = {Daniela Jaru\v skov\'a}, title = {Change-point estimator in gradually changing sequences}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {39}, year = {1998}, pages = {551-561}, zbl = {0962.62019}, mrnumber = {1666790}, language = {en}, url = {http://dml.mathdoc.fr/item/119032} }
Jarušková, Daniela. Change-point estimator in gradually changing sequences. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) pp. 551-561. http://gdmltest.u-ga.fr/item/119032/
The Statistical Analysis of Time Series, John Wiley New York (1971). (1971) | MR 0283939 | Zbl 0225.62108
Convergence of Probability Measures, John Wiley New York (1968). (1968) | MR 0233396 | Zbl 0172.21201
Hypothesis testing when a nuisance parameter is present only under the alternative, Biometrika 74 33-43 (1987). (1987) | MR 0885917 | Zbl 0612.62023
Inference about the intersection in two-phase regression, Biometrika 56 495-504 (1969). (1969) | Zbl 0183.48505
Estimation in location model with gradual changes, Comment. Math. Univ. Carolinae 39 (1998), 147-157. (1998) | MR 1623002
Confidence regions in semilinear regression, Biometrika 78 15-31 (1991). (1991) | MR 1118227 | Zbl 0728.62063
Predel'nyje teoremy dlja sum nezavisimych slucajnych velicin, Nauka Moskva (1987). (1987) | MR 0896036
Confidence region in broken line regression, Change-point problems IMS Lecture Notes - Monograph Series 23 292-316. (1994) | MR 1477932