We show that on every nonseparable Banach space which has a fundamental system (e.g\. on every nonseparable weakly compactly generated space, in particular on every nonseparable Hilbert space) there is a convex continuous function $f$ such that the set of its G\^ateaux differentiability points is not Borel. Thereby we answer a question of J. Rainwater (1990) and extend, in the same time, a former result of M. Talagrand (1979), who gave an example of such a function $f$ on $\ell^1(\frak c)$.
@article{119025, author = {Petr Holick\'y and M. \v Sm\'\i dek and Lud\v ek Zaj\'\i \v cek}, title = {Convex functions with non-Borel set of G\^ateaux differentiability points}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {39}, year = {1998}, pages = {469-482}, zbl = {0970.46026}, mrnumber = {1666778}, language = {en}, url = {http://dml.mathdoc.fr/item/119025} }
Holický, Petr; Šmídek, M.; Zajíček, Luděk. Convex functions with non-Borel set of Gâteaux differentiability points. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) pp. 469-482. http://gdmltest.u-ga.fr/item/119025/
On weakly Lindelöf Banach spaces, Rocky Mountain J. Math. 23 (1993), 395-446. (1993) | MR 1226181 | Zbl 0797.46009
Sequences and Series in Banach Spaces, Springer-Verlag (1984), New York-Berlin. (1984) | MR 0737004
Smoothness and Renormings in Banach Spaces, Longman Scientific & Technical Essex (1993). (1993) | MR 1211634 | Zbl 0782.46019
Gâteaux Differentiability of Convex Functions and Topology - Weak Asplund Spaces, John Wiley and Sons, Interscience (1997). (1997) | MR 1461271 | Zbl 0883.46011
Biorthogonal systems and big quotient spaces, Contemporary Mathematics 85 (1989), 87-110. (1989) | MR 0983383 | Zbl 0684.46016
Biortogonal'nyje sistemy v prostranstvach ogranichennyh funkcij, Dokl. Akad. Nauk. Ukrain. SSR, Ser. A, n. 3 (1983), 7-9. (1983) | MR 0698870
On complete biorthogonal systems in a Banach space, Funkcional. Anal. i Prilozhen. 17 (1) 1-7 (1983). (1983) | MR 0695091
Banach spaces without complete minimal system, Functional Anal. and Appl. 14 (1980), 301-302. (1980) | MR 0595733
Introduction to Banach spaces II, Lecture Notes, Matfyzpress Prague (1996). (1996)
On Banach spaces which contain $\ell^1(\tau)$ and types of measures on compact spaces, Israel J. Math 28 (1997), 313-324. (1997) | MR 0511799
Abstract Harmonic Analysis, Vol I (1963), Vol II (1970), Springer-Verlag Berlin, New York. | MR 0551496
Banach spaces and Topology, Handbook of Set-Theoretic Topology (1984), North-Holland Amsterdam, New York, Oxford, Tokyo 1045-1142. (1984) | MR 0776642 | Zbl 0584.46007
Convex Functions, Monotone Operators and Differentiability, Lecture Notes in Mathematics 1364, Springer-Verlag Berlin, Heidelberg (1993). (1993) | MR 1238715 | Zbl 0921.46039
Banach space without a fundamental biorthogonal system, Soviet Math. Dokl. 22 (1980), 450-453. (1980) | Zbl 0513.46015
A class of null sets associated with convex functions on Banach spaces, Bull. Austral. Math. Soc. 42 (1990), 315-322. (1990) | MR 1073653 | Zbl 0724.46017
On quasi-complemented subspaces, with an appendix on compactness of operators from $L^p(\mu)$ to $L^r(\nu)$, J. Functional Analysis 4 (1969), 176-214. (1969) | MR 0250036
Fourier analysis on groups, Interscience Publishers New York (1967). (1967) | MR 0152834
Deux exemples de fonctions convexes, C. R. Acad. Sci. Paris, Serie A - 461 (1979), 288 461-464. (1979) | MR 0527697 | Zbl 0398.46037
Simultaneous resolutions of the identity operator in normed spaces, Collect. Math. (1991), 42 265-284. (1991) | MR 1203185 | Zbl 0788.47024
A note on partial derivatives of convex functions, Comment. Math. Univ. Carolinae 24 (1983), 89-91. (1983) | MR 0703927