Quasi-balanced torsion-free groups
Goeters, H. Pat ; Ullery, William
Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998), p. 431-443 / Harvested from Czech Digital Mathematics Library

An exact sequence $0\to A\to B\to C\to 0$ of torsion-free abelian groups is quasi-balanced if the induced sequence $$ 0\to \bold Q\otimes\operatorname{Hom}(X,A)\to\bold Q\otimes\operatorname{Hom}(X,B) \to\bold Q\otimes\operatorname{Hom}(X,C)\to 0 $$ is exact for all rank-1 torsion-free abelian groups $X$. This paper sets forth the basic theory of quasi-balanced sequences, with particular attention given to the case in which $C$ is a Butler group. The special case where $B$ is almost completely decomposable gives rise to a descending chain of classes of Butler groups. This chain is a generalization of the chain of Kravchenko classes that arise from balanced sequences. As an application of our results concerning quasi-balanced sequences, the relationship between the two chains in the quasi-category of torsion-free abelian groups is illuminated.

Publié le : 1998-01-01
Classification:  20K15,  20K25,  20K27,  20K35,  20K40
@article{119022,
     author = {H. Pat Goeters and William Ullery},
     title = {Quasi-balanced torsion-free groups},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {39},
     year = {1998},
     pages = {431-443},
     zbl = {0968.20027},
     mrnumber = {1666837},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119022}
}
Goeters, H. Pat; Ullery, William. Quasi-balanced torsion-free groups. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) pp. 431-443. http://gdmltest.u-ga.fr/item/119022/

Arnold D. Pure subgroups of finite rank completely decomposable groups, Abelian Group Theory Lecture Notes in Math. 874 Springer-Verlag New York (1982), 1-31. (1982) | MR 0645913

Arnold D. Finite Rank Torsion-Free Abelian Groups and Rings, Lecture Notes in Math. 931 Springer-Verlag New York (1982). (1982) | MR 0665251 | Zbl 0493.20034

Arnold D.; Vinsonhaler C. Pure subgroups of finite rank completely decomposable groups $anII$, Abelian Group Theory Lecture Notes in Math. 1006 Springer-Verlag New York (1983), 97-143. (1983) | MR 0722614

Butler M.C.R. A class of torsion-free abelian groups of finite rank, Proc. London Math. Soc. 15 (1965), 680-698. (1965) | MR 0218446 | Zbl 0131.02501

Fuchs L. Infinite Abelian Groups, II Academic Press New York (1973). (1973) | MR 0349869 | Zbl 0257.20035

Kravchenko A.A. Balanced and cobalanced Butler groups, Math. Notes Acad. Sci. USSR 45 (1989), 369-373. (1989) | MR 1005459 | Zbl 0695.20032

Nongxa L.G.; Vinsonhaler C. Balanced Butler groups, J. Algebra, to appear. | MR 1378545 | Zbl 0846.20060

Nongxa L.G.; Vinsonhaler C. Balanced representations of partially ordered sets, to appear.

C. Vinsonhaler A survey of balanced Butler groups and representations, Abelian Groups and Modules Lecture Notes in Pure and Applied Math. 182 Marcel Dekker (1996), 113-122. (1996) | MR 1415625 | Zbl 0865.20040