Modifying Bowen's entropy, we introduce a new uniform entropy. We prove that the completion theorem for uniform entropy holds in the class of all metric spaces. However, the completion theorem for Bowen's entropy does not hold in the class of all totally bounded metric spaces.
@article{119016, author = {Takashi Kimura}, title = {Completion theorem for uniform entropy}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {39}, year = {1998}, pages = {389-399}, zbl = {0937.54024}, mrnumber = {1651987}, language = {en}, url = {http://dml.mathdoc.fr/item/119016} }
Kimura, Takashi. Completion theorem for uniform entropy. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) pp. 389-399. http://gdmltest.u-ga.fr/item/119016/
The structure of orbits in dynamical systems, Fund. Math. 129 (1988), 39-58. (1988) | MR 0954894 | Zbl 0664.54026
Flows on one-dimensional spaces, Fund. Math. 131 (1988), 53-67. (1988) | MR 0970914 | Zbl 0677.54032
On one-to-one continuous images of $\Bbb R$, Topology Appl. 41 (1991), 17-23. (1991) | MR 1129695
Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309-319. (1965) | MR 0175106 | Zbl 0127.13102
Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 401-414. (1971) | MR 0274707 | Zbl 0212.29201
Ergodic Theory on Compact Spaces, Lecture Notes in Math. 527, Springer, Berlin-Heidelberg-New York, 1976. | MR 0457675 | Zbl 0328.28008
General Topology, Heldermann, Berlin, 1989. | MR 1039321 | Zbl 0684.54001
On the simple extension of a space with respect to a uniformity. I, II, III, IV, Proc. Japan Acad. 27 (1951), 65-72, 130-137, 166-171, 632-636. (1951) | MR 0048782
Ergodic Theory - Introductory Lectures, Lecture Notes in Math. 458, Springer, Berlin-Heidelberg-New York, 1975. | MR 0480949 | Zbl 0299.28012