Rangs et types de rang maximum dans les corps différentiellement clos
Benoist, Franck
J. Symbolic Logic, Tome 67 (2002) no. 1, p. 1178-1188 / Harvested from Project Euclid
It is known that in differentially closed fields of characteristic zero, the ranks of stability $RU$, $RM$ and the topological rank $RH$ need not to be equal. Pillay and Pong have just shown however that the ranks $RU$ and $RM$ coincide in a group definable in this theory. At the opposite, we will show in this paper that the ranks $RM$ and $RH$ of a definable group can also be different, and even lead to non-equivalent notions of generic type.
Publié le : 2002-09-14
Classification:  03C45,  12H05
@article{1190150157,
     author = {Benoist, Franck},
     title = {Rangs et types de rang maximum dans les corps diff\'erentiellement clos},
     journal = {J. Symbolic Logic},
     volume = {67},
     number = {1},
     year = {2002},
     pages = { 1178-1188},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1190150157}
}
Benoist, Franck. Rangs et types de rang maximum dans les corps différentiellement clos. J. Symbolic Logic, Tome 67 (2002) no. 1, pp.  1178-1188. http://gdmltest.u-ga.fr/item/1190150157/