Groundwork for weak analysis
Fernandes, António M. ; Ferreira, Fernando
J. Symbolic Logic, Tome 67 (2002) no. 1, p. 557-578 / Harvested from Project Euclid
This paper develops the very basic notions of analysis in a weak second-order theory of arithmetic BTFA whose provably total functions are the polynomial time computable functions. We formalize within BTFA the real number system and the notion of a continuous real function of a real variable. The theory BTFA is able to prove the intermediate value theorem, wherefore it follows that the system of real numbers is a real closed ordered field. In the last section of the paper, we show how to interpret the theory BTFA in Robinson’s theory of arithmetic Q. This fact entails that the elementary theory of the real closed ordered fields is interpretable in Q.
Publié le : 2002-06-14
Classification:  03F35,  03B30
@article{1190150098,
     author = {Fernandes, Ant\'onio M. and Ferreira, Fernando},
     title = {Groundwork for weak analysis},
     journal = {J. Symbolic Logic},
     volume = {67},
     number = {1},
     year = {2002},
     pages = { 557-578},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1190150098}
}
Fernandes, António M.; Ferreira, Fernando. Groundwork for weak analysis. J. Symbolic Logic, Tome 67 (2002) no. 1, pp.  557-578. http://gdmltest.u-ga.fr/item/1190150098/