Theories with equational forking
Junker, Markus ; Kraus, Ingo
J. Symbolic Logic, Tome 67 (2002) no. 1, p. 326-340 / Harvested from Project Euclid
We show that equational independence in the sense of Srour equals local non-forking. We then examine so-called almost equational theories where equational independence is a symmetric relation.
Publié le : 2002-03-14
Classification:  03C45
@article{1190150047,
     author = {Junker, Markus and Kraus, Ingo},
     title = {Theories with equational forking},
     journal = {J. Symbolic Logic},
     volume = {67},
     number = {1},
     year = {2002},
     pages = { 326-340},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1190150047}
}
Junker, Markus; Kraus, Ingo. Theories with equational forking. J. Symbolic Logic, Tome 67 (2002) no. 1, pp.  326-340. http://gdmltest.u-ga.fr/item/1190150047/