A subset $A$ of a Hausdorff space $X$ is called an $\omega$H-set in $X$ if for every open family $\Cal U$ in $X$ such that $A \subset \bigcup \Cal U$ there exists a countable subfamily $\Cal V$ of $\Cal U$ such that $A \subset \bigcup \{ \overline{V} : V \in \Cal V \}$. In this paper we introduce a new cardinal function $t_{s\theta}$ and show that $|A| \leq 2^{t_{s\theta}(X)\psi_{c}(X)}$ for every $\omega$H-set $A$ of a Hausdorff space $X$.
@article{119013, author = {Alessandro Fedeli}, title = {$\omega$H-sets and cardinal invariants}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {39}, year = {1998}, pages = {367-370}, zbl = {0937.54004}, mrnumber = {1651975}, language = {en}, url = {http://dml.mathdoc.fr/item/119013} }
Fedeli, Alessandro. $\omega$H-sets and cardinal invariants. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) pp. 367-370. http://gdmltest.u-ga.fr/item/119013/
A couple of questions concerning cardinal invariants, Q & A in General Topology 14.2 (1996), pages ???. (1996) | MR 1403339 | Zbl 0856.54002
On the cardinality of Urysohn spaces, Canad. Math. Bull. 31 (1988), 153-158. (1988) | MR 0942065 | Zbl 0646.54005
Embeddings into first countable spaces with H-closed like properties, preprint. | MR 1601642 | Zbl 0939.54003
Local cardinal functions of H-closed spaces, Comment. Math. Univ. Carolinae 37.2 (1996), 371-374. (1996) | MR 1399007 | Zbl 0854.54003
An introduction to applications of elementary submodels in topology, Topology Proceedings 13 (1988), 17-72. (1988) | MR 1031969
More set-theory for topologists, Topology Appl. 64 (1995), 243-300. (1995) | MR 1342520 | Zbl 0837.54001
Cardinalities of H-closed spaces, Topology Proceedings 7 (1982), 27-50. (1982) | MR 0696618 | Zbl 0569.54004
General Topology, Sigma Series in Pure Mathematics 6, Heldermann Verlag, Berlin (1989). (1989) | MR 1039321 | Zbl 0684.54001
Elementary submodels and cardinal functions, Topology Proceedings 20 (1995), 91-110. (1995) | MR 1429175 | Zbl 0894.54008
Cardinal functions I, 1-61 Handbook of Set-theoretic Topology (Kunen K. and Vaughan J.E., eds.), Elsevier Science Publishers B.V., North Holland (1984). (1984) | MR 0776620 | Zbl 0559.54003
Cardinal functions in topology - ten years later, Mathematical Centre Tracts 123, Amsterdam (1980). (1980) | MR 0576927
On the cardinality of Urysohn and H-closed spaces, 105-111 Proc. of the Mathematical Conference in Priština (1994). (1994) | MR 1466279
H-closed topological spaces, Amer. Math. Soc. Transl. 78 (ser. 2) (1969), 103-118. (1969)
The construction of topological spaces: Planks and Resolutions, 675-757 Recent Progress in General Topology (Hušek M. and Van Mill J., eds.), Elsevier Science Publishers, B.V., North Holland (1992). (1992) | MR 1229141 | Zbl 0803.54001
The Lindelöf number of a power; an introduction to the use of elementary submodels in general topology, Topology Appl. 58 (1994), 25-34. (1994) | MR 1280708 | Zbl 0836.54004