It is well known that any function algebra has an essential set. In this note we define an essential set for an arbitrary function space (not necessarily algebra) and prove that any function space has an essential set.
@article{119010, author = {Jan \v Cerych}, title = {Function spaces have essential sets}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {39}, year = {1998}, pages = {337-340}, zbl = {0937.46048}, mrnumber = {1651963}, language = {en}, url = {http://dml.mathdoc.fr/item/119010} }
Čerych, Jan. Function spaces have essential sets. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) pp. 337-340. http://gdmltest.u-ga.fr/item/119010/
Complex function algebras, Trans. Amer. Math. Soc. 90 (1959), 383-393. (1959) | MR 0107164 | Zbl 0086.31602
Maximal algebras of continuous functions, Acta Math. 103 (1960), 217-241. (1960) | MR 0117540 | Zbl 0195.13903
Measures orthogonal to algebras and sets of antisymmetry, Trans. Amer. Math. Soc. 98 (1962), 415-435. (1962) | MR 0173957 | Zbl 0111.11801
On essential sets of function algebras in terms of their orthogonal measures, Comment. Math. Univ. Carolinae 36.3 (1995), 471-474. (1995) | MR 1364487