Function spaces have essential sets
Čerych, Jan
Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998), p. 337-340 / Harvested from Czech Digital Mathematics Library

It is well known that any function algebra has an essential set. In this note we define an essential set for an arbitrary function space (not necessarily algebra) and prove that any function space has an essential set.

Publié le : 1998-01-01
Classification:  46E15,  46E35,  46J10
@article{119010,
     author = {Jan \v Cerych},
     title = {Function spaces have essential sets},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {39},
     year = {1998},
     pages = {337-340},
     zbl = {0937.46048},
     mrnumber = {1651963},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119010}
}
Čerych, Jan. Function spaces have essential sets. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) pp. 337-340. http://gdmltest.u-ga.fr/item/119010/

Bear H.S. Complex function algebras, Trans. Amer. Math. Soc. 90 (1959), 383-393. (1959) | MR 0107164 | Zbl 0086.31602

Hoffman K.; Singer I.M. Maximal algebras of continuous functions, Acta Math. 103 (1960), 217-241. (1960) | MR 0117540 | Zbl 0195.13903

Glicksberg I. Measures orthogonal to algebras and sets of antisymmetry, Trans. Amer. Math. Soc. 98 (1962), 415-435. (1962) | MR 0173957 | Zbl 0111.11801

Čerych J. On essential sets of function algebras in terms of their orthogonal measures, Comment. Math. Univ. Carolinae 36.3 (1995), 471-474. (1995) | MR 1364487