We show that in the presence of large cardinals proper forcings do not change the theory of $L(\Bbb R)$ with real and ordinal parameters and do not code any set of ordinals into the reals unless that set has already been so coded in the ground model.
@article{119006, author = {Itay Neeman and Jind\v rich Zapletal}, title = {Proper forcings and absoluteness in $L(\Bbb R)$}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {39}, year = {1998}, pages = {281-301}, zbl = {0939.03054}, mrnumber = {1651950}, language = {en}, url = {http://dml.mathdoc.fr/item/119006} }
Neeman, Itay; Zapletal, Jindřich. Proper forcings and absoluteness in $L(\Bbb R)$. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) pp. 281-301. http://gdmltest.u-ga.fr/item/119006/
Coding the Universe, Oxford University Press Oxford (1985). (1985) | MR 0645538
Large cardinals and definable counterexamples to the continuum hypothesis, Ann. Pure Appl. Logic 76 (1995), 47-97. (1995) | MR 1359154 | Zbl 0837.03040
Martin's Maximum, saturated ideals and nonregular ultrafilters, Ann. Math. 127 (1988), 1-47. (1988) | MR 0924672 | Zbl 0645.03028
The Theory of Semisets, North Holland Amsterdam (1972). (1972) | MR 0289286
Set Theory, (1978), Academic Press New York. (1978) | MR 0506523 | Zbl 0419.03028
Precipitous ideals, J. Symbolic Logic 45 (1980), 1-8. (1980) | MR 0560220 | Zbl 0437.03026
Descriptive Set Theory, (1980), North Holland Amsterdam. (1980) | MR 0561709 | Zbl 0433.03025
A proof of projective determinacy, J. Amer. Math. Soc. 2 71-125 (1989). (1989) | MR 0955605 | Zbl 0668.03021
Proper forcing and $L(\Bbb R)$, J. London Math. Soc. submitted.
handwritten notes of W.H. Woodin's lectures, .
Proper Forcing, Springer Verlag Berlin (1981), Lecture Notes in Math. 940. (1981) | MR 0675955
Supercompact cardinals, sets of reals and weakly homogeneous trees, Proc. Natl. Acad. Sci. USA 85 (1988), 6587-6591. (1988) | MR 0959110 | Zbl 0656.03037
The axiom of determinacy, forcing axioms and the nonstationary ideal, to appear. | MR 1713438 | Zbl 0954.03046