Proper forcings and absoluteness in $L(\Bbb R)$
Neeman, Itay ; Zapletal, Jindřich
Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998), p. 281-301 / Harvested from Czech Digital Mathematics Library

We show that in the presence of large cardinals proper forcings do not change the theory of $L(\Bbb R)$ with real and ordinal parameters and do not code any set of ordinals into the reals unless that set has already been so coded in the ground model.

Publié le : 1998-01-01
Classification:  03E40,  03E55
@article{119006,
     author = {Itay Neeman and Jind\v rich Zapletal},
     title = {Proper forcings and absoluteness in $L(\Bbb R)$},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {39},
     year = {1998},
     pages = {281-301},
     zbl = {0939.03054},
     mrnumber = {1651950},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119006}
}
Neeman, Itay; Zapletal, Jindřich. Proper forcings and absoluteness in $L(\Bbb R)$. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) pp. 281-301. http://gdmltest.u-ga.fr/item/119006/

Beller A.; Jensen R.B.; Welch P. Coding the Universe, Oxford University Press Oxford (1985). (1985) | MR 0645538

Foreman M.; Magidor M. Large cardinals and definable counterexamples to the continuum hypothesis, Ann. Pure Appl. Logic 76 (1995), 47-97. (1995) | MR 1359154 | Zbl 0837.03040

Foreman M.; Magidor M.; Shelah S. Martin's Maximum, saturated ideals and nonregular ultrafilters, Ann. Math. 127 (1988), 1-47. (1988) | MR 0924672 | Zbl 0645.03028

Hájek P.; Vopěnka P. The Theory of Semisets, North Holland Amsterdam (1972). (1972) | MR 0289286

Jech T. Set Theory, (1978), Academic Press New York. (1978) | MR 0506523 | Zbl 0419.03028

Jech T.; Magidor M.; Mitchell W.J.; Prikry K. Precipitous ideals, J. Symbolic Logic 45 (1980), 1-8. (1980) | MR 0560220 | Zbl 0437.03026

Moschovakis Y.N. Descriptive Set Theory, (1980), North Holland Amsterdam. (1980) | MR 0561709 | Zbl 0433.03025

Martin D.A.; Steel J.R. A proof of projective determinacy, J. Amer. Math. Soc. 2 71-125 (1989). (1989) | MR 0955605 | Zbl 0668.03021

Neeman I.; Zapletal J. Proper forcing and $L(\Bbb R)$, J. London Math. Soc. submitted.

Schimmerling E. handwritten notes of W.H. Woodin's lectures, .

Shelah S. Proper Forcing, Springer Verlag Berlin (1981), Lecture Notes in Math. 940. (1981) | MR 0675955

Woodin W.H. Supercompact cardinals, sets of reals and weakly homogeneous trees, Proc. Natl. Acad. Sci. USA 85 (1988), 6587-6591. (1988) | MR 0959110 | Zbl 0656.03037

Woodin W.H. The axiom of determinacy, forcing axioms and the nonstationary ideal, to appear. | MR 1713438 | Zbl 0954.03046