Tightness and resolvability
Bella, Angelo ; Malykhin, Viacheslav I.
Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998), p. 177-184 / Harvested from Czech Digital Mathematics Library

We prove resolvability and maximal resolvability of topological spaces having countable tightness with some additional properties. For this purpose, we introduce some new versions of countable tightness. We also construct a couple of examples of irresolvable spaces.

Publié le : 1998-01-01
Classification:  54A10,  54A25,  54C05
@article{118996,
     author = {Angelo Bella and Viacheslav I. Malykhin},
     title = {Tightness and resolvability},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {39},
     year = {1998},
     pages = {177-184},
     zbl = {0936.54004},
     mrnumber = {1623014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118996}
}
Bella, Angelo; Malykhin, Viacheslav I. Tightness and resolvability. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) pp. 177-184. http://gdmltest.u-ga.fr/item/118996/

Arhangel'Skiĭ A.V. Hurewicz spaces, analytic sets and fan-tightness of spaces of functions, Soviet Math. Dokl. 33 (1986), 396-399. (1986) | MR 0119188

Arhangel'Skiĭa.V.; Bella A. Countable fan-tightness versus countable tightness, Comment. Math. Univ. Carolinae 37 \number 3 (1996), 565-576. (1996) | MR 1426921 | Zbl 0881.54005

Comfort W.W.; García-Ferreira S. Resolvability: a selective survey and some new results, Topology Appl. 74 (1996), 1-19. (1996) | MR 1425934

Van Douwen E.K. Applications of maximal topologies, Topology Appl. 51 (1993), 125-139. (1993) | MR 1229708 | Zbl 0845.54028

Hewitt E. A problem of set-theoretic topology, Duke Math. J. 10 (1943), 309-333. (1943) | MR 0008692 | Zbl 0060.39407

Malykhin V.I.; Tironi G. Weakly Fréchet-Urysohn spaces, preprint.

Pytke'Ev E.G. On maximally resolvable spaces, Proc. Steklov Institute of Mathematics (1984), 154 225-230. (1984)

Sharma P.L.; Sharma S. Resolution properties in generalized $k$-spaces, Topology Appl. 29 (1989), 61-66. (1989) | MR 0944069