We prove resolvability and maximal resolvability of topological spaces having countable tightness with some additional properties. For this purpose, we introduce some new versions of countable tightness. We also construct a couple of examples of irresolvable spaces.
@article{118996, author = {Angelo Bella and Viacheslav I. Malykhin}, title = {Tightness and resolvability}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {39}, year = {1998}, pages = {177-184}, zbl = {0936.54004}, mrnumber = {1623014}, language = {en}, url = {http://dml.mathdoc.fr/item/118996} }
Bella, Angelo; Malykhin, Viacheslav I. Tightness and resolvability. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) pp. 177-184. http://gdmltest.u-ga.fr/item/118996/
Hurewicz spaces, analytic sets and fan-tightness of spaces of functions, Soviet Math. Dokl. 33 (1986), 396-399. (1986) | MR 0119188
Countable fan-tightness versus countable tightness, Comment. Math. Univ. Carolinae 37 \number 3 (1996), 565-576. (1996) | MR 1426921 | Zbl 0881.54005
Resolvability: a selective survey and some new results, Topology Appl. 74 (1996), 1-19. (1996) | MR 1425934
Applications of maximal topologies, Topology Appl. 51 (1993), 125-139. (1993) | MR 1229708 | Zbl 0845.54028
A problem of set-theoretic topology, Duke Math. J. 10 (1943), 309-333. (1943) | MR 0008692 | Zbl 0060.39407
Weakly Fréchet-Urysohn spaces, preprint.
On maximally resolvable spaces, Proc. Steklov Institute of Mathematics (1984), 154 225-230. (1984)
Resolution properties in generalized $k$-spaces, Topology Appl. 29 (1989), 61-66. (1989) | MR 0944069