We present a unified treatment of pointfree metrization theorems based on an analysis of special properties of bases. It essentially covers all the facts concerning metrization from Engelking [1] which make pointfree sense. With one exception, where the generalization is shown to be false, all the theorems extend to the general pointfree context.
@article{118995, author = {Bernhard Banaschewski and Ale\v s Pultr}, title = {A new look at pointfree metrization theorems}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {39}, year = {1998}, pages = {167-175}, zbl = {0937.54019}, mrnumber = {1623010}, language = {en}, url = {http://dml.mathdoc.fr/item/118995} }
Banaschewski, Bernhard; Pultr, Aleš. A new look at pointfree metrization theorems. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) pp. 167-175. http://gdmltest.u-ga.fr/item/118995/
General Topology, Sigma Series in Pure Mathematics, Vol.6, Helderman Verlag, Berlin, 1989. | MR 1039321 | Zbl 0684.54001
Atomless parts of spaces, Math. Scand. 31 (1972), 5-32. (1972) | MR 0358725 | Zbl 0246.54028
Graduation and dimension in locales, in: Aspects of Topology, London MS Lecture Notes 93 (1985), 195-210. (1985) | MR 0787829 | Zbl 0555.54020
Stone Spaces, Cambridge University Press, Cambridge, 1982. | MR 0698074 | Zbl 0586.54001
A sufficient condition of full normality, Comment Math. Univ. Carolinae 37 (1996), 381-389. (1996) | MR 1399010 | Zbl 0847.54025
Pointless uniformities II. (Dia)metrization, Comment. Math. Univ. Carolinae 25 (1984), 105-120. (1984) | MR 0749119
Remarks on metrizable locales, Suppl. Rend. Circ. Mat. Palermo 6 (1984), 247-258. (1984) | MR 0782722 | Zbl 0565.54001
Diameters in locales: How bad they can be, Comment. Math. Univ. Carolinae 29 (1988), 731-742. (1988) | MR 0982793 | Zbl 0668.06008
Notes on characterization of paracompact frames, Comment. Math. Univ. Carolinae 30 (1989), 377-384. (1989) | MR 1014137
On paracompact locales and metric locales, Comment. Math. Univ. Carolinae 30 (1989), 101-107. (1989) | MR 0995708
Topology via Logic, Cambridge Tracts in Theor. Comp. Sci., Number 5, Cambridge University Press, Cambridge, 1985. | MR 1002193 | Zbl 0922.54002