Let $X$ be a compact Hausdorff space with a point $x$ such that $X\setminus \{ x\}$ is linearly Lindelöf. Is then $X$ first countable at $x$? What if this is true for every $x$ in $X$? We consider these and some related questions, and obtain partial answers; in particular, we prove that the answer to the second question is ``yes'' when $X$ is, in addition, $\omega $-monolithic. We also prove that if $X$ is compact, Hausdorff, and $X\setminus \{ x\}$ is strongly discretely Lindelöf, for every $x$ in $X$, then $X$ is first countable. An example of linearly Lindelöf hereditarily realcompact non-Lindelöf space is constructed. Some intriguing open problems are formulated.
@article{118994, author = {Aleksander V. Arhangel'skii and Raushan Z. Buzyakova}, title = {Convergence in compacta and linear Lindel\"ofness}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {39}, year = {1998}, pages = {159-166}, zbl = {0937.54022}, mrnumber = {1623006}, language = {en}, url = {http://dml.mathdoc.fr/item/118994} }
Arhangel'skii, Aleksander V.; Buzyakova, Raushan Z. Convergence in compacta and linear Lindelöfness. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) pp. 159-166. http://gdmltest.u-ga.fr/item/118994/
Memoire sur les espaces topologiques compacts, Nederl. Akad. Wetensch. Proc. Ser. A 14 (1929), 1-96. (1929)
On the cardinality of bicompacta satisfying the first axiom of countability, Soviet Math. Dokl. 10 (1969), 951-955. (1969)
Structure and classification of topological spaces and cardinal invariants, Russian Math. Surveys 33 (1978), 33-96. (1978) | MR 0526012
A generic theorem in the theory of cardinal invariants of topological spaces, Comment. Math. Univ. Carolinae 36.2 (1995), 303-325. (1995) | MR 1357532
On linearly Lindelöf and strongly discretely Lindelöf spaces, to appear in Proc. AMS, 1998. | MR 1487356 | Zbl 0930.54003
General Topology, Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, revised ed., 1989. | MR 1039321 | Zbl 0684.54001
On compactness in spaces of measures and measurecompact spaces, Proc. London Math. Soc. 29 (1974), 1-16. (1974) | MR 0361745 | Zbl 0294.28005
Cardinal Functions, 1, in: Handbook of Set-theoretic Topology, Editors: Kunen K. and J.E. Vaughan, Chapter 1, pp.1-62, North-Holland, Amsterdam, 1984. | MR 0776620
Topological spaces without $\kappa $-accessible diagonal, Comment. Math. Univ. Carolinae 18 (1977), 777-788. (1977) | MR 0515009
Convergence versus character in compact spaces, Coll. Math. Soc. J. Bolyai 23 (1980), 647-651. (1980) | MR 0588812
Cardinal Functions, in M. Hušek and J. van Mill, Ed-rs: Recent Progress in General Topology, North-Holland, Amsterdam, 1993. | MR 1229134
Finally compact spaces, Soviet Math. Dokl. 145 (1962), 1199-1202. (1962) | MR 0141070
Some Conjectures, in: J. van Mill and G.M. Reed, Ed-ors, Open Problems in Topology (1990), pp.184-193, North-Holland, Amsterdam. | MR 1078646