Let ${\Cal H}$ denote the class of positive harmonic functions on a bounded domain $\Omega$ in $\Bbb R^N$. Let $S$ be a sphere contained in $\overline{\Omega}$, and let $\sigma$ denote the $(N-1)$-dimensional measure. We give a condition on $\Omega$ which guarantees that there exists a constant $K$, depending only on $\Omega$ and $S$, such that $\int_Su\,d\sigma \le K\int_{\partial\Omega}u\,d\sigma$ for every $u\in {\Cal H}\cap C(\overline{\Omega})$. If this inequality holds for every such $u$, then it also holds for a large class of non-negative subharmonic functions. For certain types of domains explicit values for $K$ are given. In particular the classical value $K=2$ for convex domains is slightly improved.
@article{118990, author = {M. P. Aldred and David H. Armitage}, title = {Inequalities for surface integrals of non-negative subharmonic functions}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {39}, year = {1998}, pages = {101-113}, zbl = {0938.31001}, mrnumber = {1622990}, language = {en}, url = {http://dml.mathdoc.fr/item/118990} }
Aldred, M. P.; Armitage, David H. Inequalities for surface integrals of non-negative subharmonic functions. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) pp. 101-113. http://gdmltest.u-ga.fr/item/118990/
On estimates of harmonic measure, Arch. Rational Mech. Anal. 65 (1977), 275-288. (1977) | MR 0466593
A note upon functions positive and subharmonic inside and on a closed convex curve, J. London Math. Soc. 21 (1946), 87-90. (1946) | MR 0019791 | Zbl 0061.23203
Superharmonic extension from the boundary of a domain, Bull. London Math. Soc. 27 (1995), 347-352. (1995) | MR 1335285 | Zbl 0835.31004
Integrals of subharmonic functions along two curves, Indag. Mathem. N.S. 4 (1993), 447-459. (1993) | MR 1252989 | Zbl 0794.31003
Introduction to Potential Theory, Wiley, New York, 1969. | MR 0261018 | Zbl 0188.17203
Harmonic majorizations in half-balls and half-spaces, Proc. London Math. Soc. (3) 21 (1970), 614-636. (1970) | MR 0315148 | Zbl 0207.41603
On NTA-conical domains, J. London Math. Soc. (2) 40 (1989), 467-475. (1989) | MR 1053615 | Zbl 0726.31001
An inequality for integrals of subharmonic functions over convex surfaces, J. London Math. Soc. 23 (1948), 56-58. (1948) | MR 0025642 | Zbl 0032.28202
Inequalities for the Green's function and boundary continuity of the gradient of solutions of elliptic differential equations, Math. Scand. 21 (1967), 17-37. (1967) | MR 0239264