This paper presents an elementary proof and a generalization of a theorem due to Abramovich and Lipecki, concerning the nonexistence of closed linear sublattices of finite codimension in nonatomic locally solid linear lattices with the Lebesgue property.
@article{118989, author = {Marek W\'ojtowicz}, title = {An elementary proof of a theorem on sublattices of finite codimension}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {39}, year = {1998}, pages = {99-100}, zbl = {0937.46002}, mrnumber = {1622986}, language = {en}, url = {http://dml.mathdoc.fr/item/118989} }
Wójtowicz, Marek. An elementary proof of a theorem on sublattices of finite codimension. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) pp. 99-100. http://gdmltest.u-ga.fr/item/118989/
On ideals and sublattices in linear lattices and $F$-lattices, Math. Proc. Cambridge Phil. Soc. 108 (1990), 79-87. (1990) | MR 1049761 | Zbl 0751.46009
Locally Solid Riesz Spaces, Academic Press, 1978. | MR 0493242 | Zbl 1043.46003
Riesz Spaces I, North-Holland, 1971.