Remarks on continuous images of Radon-Nikodým compacta
Fabián, Marián J. ; Heisler, Martin ; Matoušková, Eva
Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998), p. 59-69 / Harvested from Czech Digital Mathematics Library

A family of compact spaces containing continuous images of Radon-Nikod'ym compacta is introduced and studied. A family of Banach spaces containing subspaces of Asplund generated (i.e., GSG) spaces is introduced and studied. Further, for a continuous image of a Radon-Nikod'ym compact $K$ we prove: If $K$ is totally disconnected, then it is Radon-Nikod'ym compact. If $K$ is adequate, then it is even Eberlein compact.

Publié le : 1998-01-01
Classification:  46B22
@article{118985,
     author = {Mari\'an J. Fabi\'an and Martin Heisler and Eva Matou\v skov\'a},
     title = {Remarks on continuous images of Radon-Nikod\'ym compacta},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {39},
     year = {1998},
     pages = {59-69},
     zbl = {0937.46015},
     mrnumber = {1622332},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118985}
}
Fabián, Marián J.; Heisler, Martin; Matoušková, Eva. Remarks on continuous images of Radon-Nikodým compacta. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) pp. 59-69. http://gdmltest.u-ga.fr/item/118985/

Argyros S. Weakly Lindelöf determined Banach spaces not containing $\ell_1$, preprint.

Argyros S. Private communication, .

Benyamini Y.; Rudin M.E.; Wage M. Continuous images of weakly compact subsets of Banach spaces, Pacific J. Math. 70 (1977), 309-324. (1977) | MR 0625889 | Zbl 0374.46011

Dunford N.; Schwartz J.T. Linear Operators, Part I, Interscience Publ., New York, 1958. | Zbl 0635.47001

Fabian M. Gâteaux Differentiability of Convex Functions and Topology - Weak Asplund Spaces, John Wiley & Sons, Interscience, New York, 1997. | MR 1461271 | Zbl 0883.46011

Grothendieck A. Produits tensoriels et espaces nucleaires, Memoirs Amer. Math. Soc., No. 16, 1955. | MR 0075539

Heisler M. Singlevaluedness of monotone operators on subspaces of GSG spaces, Comment. Math. Univ. Carolinae 37 (1996), 255-261. (1996) | MR 1399000 | Zbl 0849.47025

Heisler M. Some aspects of differentiability and geometry on Banach spaces, PhD. Thesis, Prague, 1996.

Namioka I. Eberlein and Radon-Nikodým compact spaces, Lecture Notes at University College, London, 1985. | MR 0963600

Namioka I. Radon-Nikodým compact spaces and fragmentability, Mathematika 34 (1987), 258-281. (1987) | MR 0933504 | Zbl 0654.46017

Namioka I.; Phelps R.R. Banach spaces which are Asplund spaces, Duke Math. J. 42 (1975), 735-750. (1975) | MR 0390721 | Zbl 0332.46013

Orihuela J.; Schachermayer W.; Valdivia M. Every Radon-Nikodým Corson compact is Eberlein compact, Studia Math. 98 (1991), 157-174. (1991) | MR 1100920

Phelps R.R. Convex functions, monotone operators and differentiability, Lect. Notes Math., No. 1364, 2nd Edition, Springer Verlag, Berlin, 1993. | MR 1238715 | Zbl 0921.46039

Rosenthal H. The heredity problem for weakly compactly generated Banach spaces, Comp. Math. 28 (1974), 83-111. (1974) | MR 0417762 | Zbl 0298.46013

Stegall Ch. The Radon-Nikodým property in conjugate Banach spaces II, Trans. Amer. Math. Soc. 264 (1981), 507-519. (1981) | MR 0603779 | Zbl 0475.46016

Stegall Ch. More facts about conjugate Banach spaces with the Radon-Nikodým property II, Acta Univ. Carolinae - Math. et Phys. 32 (1991), 47-54. (1991) | MR 1146766 | Zbl 0773.46008

Talagrand M. Espaces de Banach faiblement $K$-analytiques, Annals of Math. 110 (1978), 407-438. (1978) | MR 0554378