Let $P$ be a cone in a Hilbert space $H$, $A: P\rightarrow 2^P$ be an accretive mapping (equivalently, $-A$ be a dissipative mapping) and $T:P\rightarrow P$ be a nonexpansive mapping. In this paper, some fixed point theorems for mappings of the type $-A+T$ are established. As an application, we utilize the results presented in this paper to study the existence problem of solutions for some kind of nonlinear integral equations in $L^2(\Omega)$.
@article{118983, author = {Shih-sen Chang and Yu-Qing Chen and Yeol Je Cho and Byung-Soo Lee}, title = {Fixed point theorems for nonexpansive operators with dissipative perturbations in cones}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {39}, year = {1998}, pages = {49-54}, zbl = {0937.47053}, mrnumber = {1622324}, language = {en}, url = {http://dml.mathdoc.fr/item/118983} }
Chang, Shih-sen; Chen, Yu-Qing; Cho, Yeol Je; Lee, Byung-Soo. Fixed point theorems for nonexpansive operators with dissipative perturbations in cones. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) pp. 49-54. http://gdmltest.u-ga.fr/item/118983/
A fixed point free nonexpansive map, Proc. Amer. Math. Soc. 82 (1981), 423-424. (1981) | MR 0612733 | Zbl 0468.47036
Nonlinear nonexpansive operators in Banach spaces, Proc. Nat. Acad. Sci. U.S.A 54 (1965), 1041-1044. (1965) | MR 0187120
Nonlinear Operators and Nonlinear Equations of Evolution in Banach Spaces, Proc. Symp. Pure Math. Vol. 18, Part 2 (1976). (1976) | MR 0405188 | Zbl 0327.47022
Fixed Point Theory with Applications, Chongqing Publishing House, Chongqing (1984). (1984)
The fixed point index for accretive mappings with $k$-set contraction perturbation in cones, Internat. J. Math. and Math. Sci. 2 (1996), 287-290. (1996) | MR 1375990
On accretive operators in cones of Banach spaces, Nonlinear Anal. TMA 27 (1996), 1125-1135. (1996) | MR 1407451 | Zbl 0883.47057
On $1$-set contraction perturbations of accretive operators in cones of Banach spaces, J. Math. Anal. Appl. 201 (1996), 966-980. (1996) | MR 1400574 | Zbl 0864.47027
Fixed point theorems for contraction mappings with applications to nonexpansive and pseudo-contractive mappings, Rocky Mountain J. Math. 4 (1994), 69-79. (1994) | MR 0331136
On an Altman type fixed point theorem on convex cones, Rocky Mountain J. Math. 2 (1995), 701-714. (1995) | MR 1336557 | Zbl 0868.47035
Some results on pseudo-contractive mappings, Pacific J. Math. 71 (1977), 89-100. (1977) | MR 0487615
Pseudo-contractive mappings and the Leray-Schauder boundary condition, Comment. Math. Univ. Carolinae 20 (1979), 745-756. (1979) | MR 0555187 | Zbl 0429.47021
Some results and problems in the fixed point theory for nonexpansive and pseudo-contractive mappings in Hilbert spaces, Academic Press, S. Swaminathan ed. (1976). (1976)