Decaying positive solutions of some quasilinear differential equations
Tadie
Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998), p. 39-47 / Harvested from Czech Digital Mathematics Library

The existence of decaying positive solutions in ${\Bbb R}_+$ of the equations $(E_\lambda )$ and $(E_\lambda^1)$ displayed below is considered. From the existence of such solutions for the subhomogeneous cases (i.e. $t^{1-p} F(r,tU,t|U'|) \searrow 0$ as $t \nearrow \infty $), a super-sub-solutions method (see \S\,2.2) enables us to obtain existence theorems for more general cases.

Publié le : 1998-01-01
Classification:  34B15,  34C10,  34C99,  35B05,  35J60,  35J65,  35J70
@article{118982,
     author = {Tadie},
     title = {Decaying positive solutions of some quasilinear differential equations},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {39},
     year = {1998},
     pages = {39-47},
     zbl = {0944.34005},
     mrnumber = {1622320},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118982}
}
Tadie. Decaying positive solutions of some quasilinear differential equations. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) pp. 39-47. http://gdmltest.u-ga.fr/item/118982/

Hardy G.H Et Al. Inegalities, Cambridge Press (1934). (1934)

Istratescu V.I. Fixed Point Theory, Math. and its Appl., Reidel Publ. (1981). (1981) | MR 0620639 | Zbl 0465.47035

Kawano N.; Yanagida E.; Yotsutani S. Structure theorems for positive radial solutions to $ {div} (|Du|^{m-2} Du) + K(|x|)u^q =0$ in ${\Bbb R}^n$, J. Math. Soc. Japan 45 no. 4 (1993), 719-742. (1993) | MR 1239344 | Zbl 0803.35040

Kusano T.; Swanson C.A. Radial entire solutions of a class of quasilinear elliptic equations, J.D.E. 83 (1990), 379-399. (1990) | MR 1033194 | Zbl 0703.35060

Tadie Weak and classical positive solutions of some elliptic equations in ${\Bbb R}^n$, $n\geq 3$: radially symmetric cases, Quart. J. Oxford 45 (1994), 397-406. (1994) | MR 1295583

Tadie Subhomogeneous and singular quasilinear Emden-type ODE, to appear. | Zbl 1058.34505

Yasuhiro F.; Kusano T.; Akio O. Symmetric positive entire solutions of second order quasilinear degenerate elliptic equations, Arch. Rat. Mech. Anal. 127 (1994), 231-254. (1994) | MR 1288603 | Zbl 0807.35035

Yin Xi Huang Decaying positive entire solutions of the p-Laplacian, Czech. Math. J. 45 no. 120 (1995), 205-220. (1995) | MR 1331458