The Re-nonnegative definite solutions to the matrix equation $AXB=C$
Wang, Qing Wen ; Yang, Chang Lan
Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998), p. 7-13 / Harvested from Czech Digital Mathematics Library

An $n\times n$ complex matrix $A$ is called Re-nonnegative definite (Re-nnd) if the real part of $x^{\ast } Ax$ is nonnegative for every complex $n$-vector $x$. In this paper criteria for a partitioned matrix to be Re-nnd are given. A necessary and sufficient condition for the existence of and an expression for the Re-nnd solutions of the matrix equation $AXB=C$ are presented.

Publié le : 1998-01-01
Classification:  15A24,  15A57
@article{118980,
     author = {Qing Wen Wang and Chang Lan Yang},
     title = {The Re-nonnegative definite solutions to the matrix equation $AXB=C$},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {39},
     year = {1998},
     pages = {7-13},
     zbl = {0937.15008},
     mrnumber = {1622312},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118980}
}
Wang, Qing Wen; Yang, Chang Lan. The Re-nonnegative definite solutions to the matrix equation $AXB=C$. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) pp. 7-13. http://gdmltest.u-ga.fr/item/118980/

Wu L.; Cain B. The Re-nonnegative definite solutions to matrix inverse problem $AX=B$, Linear Algebra Appl. 236 (1996), 137-146. (1996) | MR 1375611

Khatri C.G.; Mitra S.K. Hermitian and nonnegative definite solutions of linear matrix equations, SIAM J. Appl. Math. 31.4 (1976), 579-585. (1976) | MR 0417212 | Zbl 0359.65033

Chu K.E. Singular value and general singular value decompositions and the solution of linear matrix equation, Linear Algebra Appl. 88/89 (1987), 83-98. (1987) | MR 0882442

Porter A.D.; Mousouris N. Ranked solutions of $AXC=B$ and $AX=B$, Linear Algebra Appl. 24 (1979), 217-224. (1979) | MR 0524838 | Zbl 0411.15009

Dai H. On the symmetric solution of linear matrix equations, Linear Algebra Appl. 131 (1990), 1-7. (1990) | MR 1057060

Wang Q.W. The metapositive definite self-conjugate solutions of the matrix equation $AXB=C$ over a skew field, Chinese Quarterly J. Math. 3 (1995), 42-51. (1995)

Wang Q.W. The matrix equation $AXB=C$ over an arbitrary skew field, Chinese Quarterly J. Math. 4 (1996), 1-5. (1996)

Wang Q.W. Skewpositive semidefinite solutions to the quaternion matrix equation $AXB=C$, Far East. J. Math. Sci., to appear. | MR 1432967

Paige C.C.; Saunders M.A. Towards a generalized singular value decomposition, SIAM J. Numer. Anal. 18 (1981), 398-405. (1981) | MR 0615522 | Zbl 0471.65018

Stewart G.W. Computing the CS-decomposition of a partitioned orthogonal matrix, Numer. Math. 40 (1982), 297-306. (1982) | MR 0695598