Pluricanonical systems of projective varieties of general type II
Tsuji, Hajime
Osaka J. Math., Tome 44 (2007) no. 1, p. 723-764 / Harvested from Project Euclid
We prove that there exists a positive integer $\nu_{n}$ depending only on $n$ such that for every smooth projective $n$-fold of general type $X$ defined over complex numbers, $|mK_{X}|$ gives a birational rational map from $X$ into a projective space for every $m\geq \nu_{n}$. This theorem gives an affirmative answer to Severi's conjecture.
Publié le : 2007-09-14
Classification:  14J40,  32J18
@article{1189717430,
     author = {Tsuji, Hajime},
     title = {Pluricanonical systems of projective varieties of general type II},
     journal = {Osaka J. Math.},
     volume = {44},
     number = {1},
     year = {2007},
     pages = { 723-764},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1189717430}
}
Tsuji, Hajime. Pluricanonical systems of projective varieties of general type II. Osaka J. Math., Tome 44 (2007) no. 1, pp.  723-764. http://gdmltest.u-ga.fr/item/1189717430/