A note on stable Clifford extensions of modules
Lu, Ziqun
Osaka J. Math., Tome 44 (2007) no. 1, p. 563-565 / Harvested from Project Euclid
Let $H$ be a normal subgroup of $G$. Let $W$ be a $G$-invariant indecomposable $\mathit{RH}$-module with vertex $Q$. Let $V$ be an indecomposable direct summand of the induced module $W^{G}$. Let $W'$ and $V'$ be the Green correspondents of $W$ and $V$ in $N_{H}(Q)$ and $N_{G}(Q)$ respectively. Then we prove that $\rank_{R} V/{\rank_{R}} W=\rank_{R} V'/{\rank_{R}} W'$.
Publié le : 2007-09-14
Classification:  20C20,  20C05
@article{1189717422,
     author = {Lu, Ziqun},
     title = {A note on stable Clifford extensions of modules},
     journal = {Osaka J. Math.},
     volume = {44},
     number = {1},
     year = {2007},
     pages = { 563-565},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1189717422}
}
Lu, Ziqun. A note on stable Clifford extensions of modules. Osaka J. Math., Tome 44 (2007) no. 1, pp.  563-565. http://gdmltest.u-ga.fr/item/1189717422/