A generalization of several classical invariants of links
Cimasoni, David ; Turaev, Vladimir
Osaka J. Math., Tome 44 (2007) no. 1, p. 531-561 / Harvested from Project Euclid
We extend several classical invariants of links in the 3-sphere to links in so-called quasi-cylinders. These invariants include the linking number, the Seifert form, the Alexander module, the Alexander-Conway polynomial and the Murasugi-Tristram-Levine signatures.
Publié le : 2007-09-14
Classification:  57M25
@article{1189717421,
     author = {Cimasoni, David and Turaev, Vladimir},
     title = {A generalization of several classical invariants of links},
     journal = {Osaka J. Math.},
     volume = {44},
     number = {1},
     year = {2007},
     pages = { 531-561},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1189717421}
}
Cimasoni, David; Turaev, Vladimir. A generalization of several classical invariants of links. Osaka J. Math., Tome 44 (2007) no. 1, pp.  531-561. http://gdmltest.u-ga.fr/item/1189717421/