Separation of $(n+1)$-families of sets in general position in $\bold R^n$
Balaj, Mircea
Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997), p. 743-748 / Harvested from Czech Digital Mathematics Library

In this paper the main result in [1], concerning $(n+1)$-families of sets in general position in ${\bold R}^n$, is generalized. Finally we prove the following theorem: If $\{A_1,A_2,\dots,A_{n+1}\}$ is a family of compact convexly connected sets in general position in ${\bold R}^n$, then for each proper subset $I$ of $\{1,2,\dots,n+1\}$ the set of hyperplanes separating $\cup\{A_i: i\in I\}$ and $\cup\{A_j: j\in \overline{I}\}$ is homeomorphic to $S_n^+$.

Publié le : 1997-01-01
Classification:  47H10,  52A37
@article{118969,
     author = {Mircea Balaj},
     title = {Separation of $(n+1)$-families of sets in general position in $\bold R^n$},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {38},
     year = {1997},
     pages = {743-748},
     zbl = {0946.52002},
     mrnumber = {1603706},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118969}
}
Balaj, Mircea. Separation of $(n+1)$-families of sets in general position in $\bold R^n$. Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) pp. 743-748. http://gdmltest.u-ga.fr/item/118969/

Balaj M. $(n{+}1)$-families of sets in general position, Beitrage zur Algebra und Geometrie 37 (1996), 67-74. (1996) | MR 1407806 | Zbl 0856.52007

Fan K. Fixed-point and minimax theorems in locally convex topological linear spaces, Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 121-126. (1952) | MR 0047317 | Zbl 0047.35103

Gaal S.A. Point Set Topology, Academic Press, New York and London, 1964. | MR 0171253 | Zbl 0124.15401

Glicksberg I.L. A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points, Proc. Amer. Math. Soc. 3 (1952), 170-174. (1952) | MR 0046638 | Zbl 0163.38301

Hanner O.; Radström H. A generalization of a theorem of Fenchel, Proc. Amer. Math. Soc. 2 (1951), 589-593. (1951) | MR 0044142

Singer I. Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces (in Romanian), Edit. Academiei Române, Bucureşti, 1967. | MR 0235368

Valentine F.A. The dual cone and Helly type theorems, in: Convexity, V.L. Klee ed., Proc. Sympos. Pure Math. 7, Amer. Math. Soc., 1963, pp.473-493. | MR 0157285 | Zbl 0138.43204

Valentine F.A. Konvexe Mengen, Manheim, 1968. | MR 0226495 | Zbl 0157.52501