In this paper the main result in [1], concerning $(n+1)$-families of sets in general position in ${\bold R}^n$, is generalized. Finally we prove the following theorem: If $\{A_1,A_2,\dots,A_{n+1}\}$ is a family of compact convexly connected sets in general position in ${\bold R}^n$, then for each proper subset $I$ of $\{1,2,\dots,n+1\}$ the set of hyperplanes separating $\cup\{A_i: i\in I\}$ and $\cup\{A_j: j\in \overline{I}\}$ is homeomorphic to $S_n^+$.
@article{118969, author = {Mircea Balaj}, title = {Separation of $(n+1)$-families of sets in general position in $\bold R^n$}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {38}, year = {1997}, pages = {743-748}, zbl = {0946.52002}, mrnumber = {1603706}, language = {en}, url = {http://dml.mathdoc.fr/item/118969} }
Balaj, Mircea. Separation of $(n+1)$-families of sets in general position in $\bold R^n$. Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) pp. 743-748. http://gdmltest.u-ga.fr/item/118969/
$(n{+}1)$-families of sets in general position, Beitrage zur Algebra und Geometrie 37 (1996), 67-74. (1996) | MR 1407806 | Zbl 0856.52007
Fixed-point and minimax theorems in locally convex topological linear spaces, Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 121-126. (1952) | MR 0047317 | Zbl 0047.35103
Point Set Topology, Academic Press, New York and London, 1964. | MR 0171253 | Zbl 0124.15401
A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points, Proc. Amer. Math. Soc. 3 (1952), 170-174. (1952) | MR 0046638 | Zbl 0163.38301
A generalization of a theorem of Fenchel, Proc. Amer. Math. Soc. 2 (1951), 589-593. (1951) | MR 0044142
Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces (in Romanian), Edit. Academiei Române, Bucureşti, 1967. | MR 0235368
The dual cone and Helly type theorems, in: Convexity, V.L. Klee ed., Proc. Sympos. Pure Math. 7, Amer. Math. Soc., 1963, pp.473-493. | MR 0157285 | Zbl 0138.43204
Konvexe Mengen, Manheim, 1968. | MR 0226495 | Zbl 0157.52501