Full regularity of weak solutions to a class of nonlinear fluids in two dimensions -- stationary, periodic problem
Kaplický, Petr ; Málek, Josef ; Stará, Jana
Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997), p. 681-695 / Harvested from Czech Digital Mathematics Library

We prove the existence of regular solution to a system of nonlinear equations describing the steady motions of a certain class of non-Newtonian fluids in two dimensions. The equations are completed by requirement that all functions are periodic.

Publié le : 1997-01-01
Classification:  35D10,  35J65,  35Q35,  76A05,  76F10
@article{118966,
     author = {Petr Kaplick\'y and Josef M\'alek and Jana Star\'a},
     title = {Full regularity of weak solutions to a class of nonlinear fluids in two dimensions -- stationary, periodic problem},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {38},
     year = {1997},
     pages = {681-695},
     zbl = {0946.76006},
     mrnumber = {1603694},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118966}
}
Kaplický, Petr; Málek, Josef; Stará, Jana. Full regularity of weak solutions to a class of nonlinear fluids in two dimensions -- stationary, periodic problem. Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) pp. 681-695. http://gdmltest.u-ga.fr/item/118966/

Amrouche Ch.; Girault V. Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension, Czechoslovak Math. J. 44 (1994), 109-141. (1994) | MR 1257940 | Zbl 0823.35140

Bojarski B.V. Generalized solutions to first order systems of elliptic type with discontinuous coefficients (in Russian), Mat. Sbornik 43 (1957), 451-503. (1957) | MR 0106324

Frehse J.; Málek J.; Steinhauer M. An Existence Result for Fluids with Shear Dependent Viscosity-Steady Flows, accepted to the Proceedings of the Second World Congress of Nonlinear Analysts.

Lions J.L. Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod Paris (1969). (1969) | MR 0259693 | Zbl 0189.40603

Málek J.; Nečas J.; Růžička M. On weak solutions to a class of non-Newtonian Incompressible fluids in bounded three-dimensional domains. The case $p\ge 2$, submitted to {Advances in Differential Equations}, Preprint SFB 256, No. 481 (1996). (1996) | MR 1389407

Málek J.; Rajagopal K.R.; Růžička M. Existence and regularity of solutions and stability of the rest state for fluids with shear dependent viscosity, Mathematical Models and Methods in Applied Sciences 6 (1995), 789-812. (1995) | MR 1348587

Meyers N.G. On $L_p$ estimates for the gradient of solutions of second order elliptic divergence equations, Annali della Scuola Normale Superiore di Pisa 17 (1963), 189-206. (1963) | MR 0159110

Nečas J. Sur les normes équivalentes dans $W^{k,p}(Ømega)$ et sur la coercivité des formes formellement positives, Les Presses de l'Université de Montréal, Montréal, 1996, pp. 102-128.

Nečas J. Sur la régularité des solutions faibles des équations elliptiques non linéaires, Comment. Math. Univ. Carolinae 9.3 (1968), 365-413. (1968) | MR 0241804

Nečas J. Sur la régularité des solutions variationnelles des équations elliptiques nonlinéaires d'ordre $2k$ en deux dimensions, Annali della Scuola Normale Superiore di Pisa XXI Fasc. III (1967), 427-457. (1967) | MR 0226467

Stará J. Regularity results for non-linear elliptic systems in two dimensions, Annali della Scuola Normale Superiore di Pisa XXV Fasc. I (1971), 163-190. (1971) | MR 0299935

Temam R. Navier-Stokes Equations and Nonlinear Functional Analysis, Society for Industrial and Applied Mathematics Philadelphia, Pennsylvania (1995), second edition. (1995) | Zbl 0833.35110

Ziemer W.P. Weakly Differentiable Functions, Springer-Verlag New York Inc. (1989). (1989) | MR 1014685 | Zbl 0692.46022