On bounds of the drag for Stokes flow around a body without thickness
Bresch, Didier
Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997), p. 665-679 / Harvested from Czech Digital Mathematics Library

This paper is devoted to lower and upper bounds of the hydrodynamical drag $T$ for a body in a Stokes flow. We obtain the upper bound since the solution for a flow in an annulus and therefore the hydrodynamical drag can be explicitly derived. The lower bound is obtained by comparison to the Newtonian capacity of a set and with the help of a result due to J. Simon $\,[10]$. The chosen approach provides an interesting lower bound which is independent of the interior of the body.

Publié le : 1997-01-01
Classification:  35Q35,  76D07
@article{118965,
     author = {Didier Bresch},
     title = {On bounds of the drag for Stokes flow around a body without thickness},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {38},
     year = {1997},
     pages = {665-679},
     zbl = {1042.76516},
     mrnumber = {1603690},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118965}
}
Bresch, Didier. On bounds of the drag for Stokes flow around a body without thickness. Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) pp. 665-679. http://gdmltest.u-ga.fr/item/118965/

Allaire G. Homogénéisation des équations de Stokes et de Navier-Stokes, Thesis, Pierre et Marie Curie University, France, 1989.

Bello J.A.; Fernandez-Cara E.; Lemoine J.; Simon J. The differentiability of the drag with respect to the variations of a lipschitz domain in Navier-Stokes flow, SIAM J. Control Optim. 35 2 (1997), 626-640. (1997) | MR 1436642

Cioranescu D.; Murat F. Un terme étrange venu d'ailleurs, Non linear partial differential equations and their applications, Collège de France Seminar, 2 et 3 ed. by H. Brezis and J.L. Lions, Research Notes in Mathematics 60 et 70, Pitman, London, 1982. | Zbl 0498.35034

Dautray R.; Lions J.L. Analyse mathématique et calcul numérique pour les Sciences et les Techniques (Chapitre II L'opérateur de Laplace), INSTN C.E.A., 1985.

Gilbart D.; Trudinger N.S. Elliptic partial differential equation of second order, second edition, Springer Verlag, 1983. | MR 0737190

Godbillon C. Eléments de Topologie Algébrique, Hermann Paris, Collection méthodes, 1971. | MR 0301725 | Zbl 0907.55001

Heywood J.G. On some paradoxes concerning two dimensional Stokes flow past an obstacle, Indiana University Mathematics Journal 24 5 (1974), 443-450. (1974) | MR 0410123 | Zbl 0315.35075

Mossino J. Inégalités Isopérimètriques et applications en physique, Travaux en cours, Hermann, éditeurs des Sciences et des Arts, Paris, 1992. | MR 0733257 | Zbl 0537.35002

Sanchez-Hubert J.; Sanchez-Palencia E. Introduction aux méthodes asymptotiques et à l'homogénéisation, Masson, 1992.

Simon J. On a result due to L.A. Caffarelli and A. Friedman concerning the asymptotic behavior of a plasma, Non linear partial differential equations and their applications, Collège de France, Seminar volume IV, Research Notes in Mathematics, Pitman, London, 1983, pp.214-239. | MR 0716520 | Zbl 0555.35045

Simon J. Distributions à valeurs vectorielles, to appear.

Stokes G.G. On the effect of the internal friction of fluids on the motion of pendulums., Trans. Camb. Phil. Soc. 9 Part III (1851), 8-106. (1851)