This paper is devoted to lower and upper bounds of the hydrodynamical drag $T$ for a body in a Stokes flow. We obtain the upper bound since the solution for a flow in an annulus and therefore the hydrodynamical drag can be explicitly derived. The lower bound is obtained by comparison to the Newtonian capacity of a set and with the help of a result due to J. Simon $\,[10]$. The chosen approach provides an interesting lower bound which is independent of the interior of the body.
@article{118965, author = {Didier Bresch}, title = {On bounds of the drag for Stokes flow around a body without thickness}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {38}, year = {1997}, pages = {665-679}, zbl = {1042.76516}, mrnumber = {1603690}, language = {en}, url = {http://dml.mathdoc.fr/item/118965} }
Bresch, Didier. On bounds of the drag for Stokes flow around a body without thickness. Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) pp. 665-679. http://gdmltest.u-ga.fr/item/118965/
Homogénéisation des équations de Stokes et de Navier-Stokes, Thesis, Pierre et Marie Curie University, France, 1989.
The differentiability of the drag with respect to the variations of a lipschitz domain in Navier-Stokes flow, SIAM J. Control Optim. 35 2 (1997), 626-640. (1997) | MR 1436642
Un terme étrange venu d'ailleurs, Non linear partial differential equations and their applications, Collège de France Seminar, 2 et 3 ed. by H. Brezis and J.L. Lions, Research Notes in Mathematics 60 et 70, Pitman, London, 1982. | Zbl 0498.35034
Analyse mathématique et calcul numérique pour les Sciences et les Techniques (Chapitre II L'opérateur de Laplace), INSTN C.E.A., 1985.
Elliptic partial differential equation of second order, second edition, Springer Verlag, 1983. | MR 0737190
Eléments de Topologie Algébrique, Hermann Paris, Collection méthodes, 1971. | MR 0301725 | Zbl 0907.55001
On some paradoxes concerning two dimensional Stokes flow past an obstacle, Indiana University Mathematics Journal 24 5 (1974), 443-450. (1974) | MR 0410123 | Zbl 0315.35075
Inégalités Isopérimètriques et applications en physique, Travaux en cours, Hermann, éditeurs des Sciences et des Arts, Paris, 1992. | MR 0733257 | Zbl 0537.35002
Introduction aux méthodes asymptotiques et à l'homogénéisation, Masson, 1992.
On a result due to L.A. Caffarelli and A. Friedman concerning the asymptotic behavior of a plasma, Non linear partial differential equations and their applications, Collège de France, Seminar volume IV, Research Notes in Mathematics, Pitman, London, 1983, pp.214-239. | MR 0716520 | Zbl 0555.35045
Distributions à valeurs vectorielles, to appear.
On the effect of the internal friction of fluids on the motion of pendulums., Trans. Camb. Phil. Soc. 9 Part III (1851), 8-106. (1851)