The purpose of this paper is to prove an existence result for a multivalued Cauchy problem using a fixed point theorem for a multivalued contraction on a generalized complete metric space.
@article{118964, author = {Adrian Petru\c sel}, title = {Fixed points for multifunctions on generalized metric spaces with applications to a multivalued Cauchy problem}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {38}, year = {1997}, pages = {657-663}, zbl = {0938.34005}, mrnumber = {1603686}, language = {en}, url = {http://dml.mathdoc.fr/item/118964} }
Petruşel, Adrian. Fixed points for multifunctions on generalized metric spaces with applications to a multivalued Cauchy problem. Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) pp. 657-663. http://gdmltest.u-ga.fr/item/118964/
Differential Inclusions, Springer Verlag, Berlin, 1984. | MR 0755330 | Zbl 0538.34007
Integrals of set-valued functions, J. Math. Anal. Appl. 12 (1965), 1-12. (1965) | MR 0185073 | Zbl 0163.06301
Multivalued contraction mappings in generalized metric spaces, Israel J. Math. 8 (1970), 5-11. (1970) | MR 0263062
Integrals, conditional expectations and martingales of multivalued functions, J. Multivariate Anal. 7 (1977), 149-182. (1977) | MR 0507504
Lipschitzian generalized differential equations, Rend. Sem. Mat. Univ. Parma 48 (1973), 159-169. (1973) | MR 0340692 | Zbl 0289.49009
On generalized complete metric space, Bull. A.M.S. 75 (1969), 113-116. (1969) | MR 0234446
Differential Inclusions and Optimal Control, Kluwer Acad. Publ., Dordrecht, 1991. | MR 1135796
A general theorem on selectors, Bull. Polish Acad. Sci. 13 (1965), 397-403. (1965) | MR 0188994 | Zbl 0152.21403
On the convergence of successive approximations in the theory of ordinary differential equations, II, Indag. Math. 20 (1958), 540-546. (1958) | MR 0124554
On a theorem by Roman Wegrzyk, Demonstratio Math. 29 (1996), 637-641. (1996) | MR 1415506
Fixed point theorems for multivalued functions and their applications to functional equations, Diss. Math. 201 (1982), 1-28. (1982) | MR 0687277