Continuity of order-preserving functions
Lavrič, Boris
Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997), p. 645-655 / Harvested from Czech Digital Mathematics Library

Let the spaces $\bold R^m$ and $\bold R^n$ be ordered by cones $P$ and $Q$ respectively, let $A$ be a nonempty subset of $\bold R^m$, and let $f:A\longrightarrow \bold R^n$ be an order-preserving function. Suppose that $P$ is generating in $\bold R^m$, and that $Q$ contains no affine line. Then $f$ is locally bounded on the interior of $A$, and continuous almost everywhere with respect to the Lebesgue measure on $\bold R^m$. If in addition $P$ is a closed halfspace and if $A$ is connected, then $f$ is continuous if and only if the range $f(A)$ is connected.

Publié le : 1997-01-01
Classification:  26B05,  26B35,  47H07
@article{118963,
     author = {Boris Lavri\v c},
     title = {Continuity of order-preserving functions},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {38},
     year = {1997},
     pages = {645-655},
     zbl = {0942.26022},
     mrnumber = {1601672},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118963}
}
Lavrič, Boris. Continuity of order-preserving functions. Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) pp. 645-655. http://gdmltest.u-ga.fr/item/118963/

Debreu G. Continuity properties of Paretian utility, Internat. Econom. Rev. 5 (1964), 285-293. (1964)

Fishburn P.C. Utility Theory for Decision Making, J. Wiley and Sons, New York, London, Sidney, Toronto, 1970. | MR 0264810

Jameson G. Ordered linear spaces, Lecture Notes in Math., Vol. 141, Springer-Verlag, Berlin, Heidelberg, New York, 1970. | MR 0438077

Lavrič B. Continuity of monotone functions, Arch. Math. 29 (1993), 1-4. (1993) | MR 1242622

Rockafellar R.T. Convex Analysis, Princeton Univ. Press, Princeton, N.J., 1972. | MR 1451876

Stoer J.; Witzgall C. Convexity and Optimization in Finite Dimensions I, Springer-Verlag, Berlin, 1970. | MR 0286498