Let the spaces $\bold R^m$ and $\bold R^n$ be ordered by cones $P$ and $Q$ respectively, let $A$ be a nonempty subset of $\bold R^m$, and let $f:A\longrightarrow \bold R^n$ be an order-preserving function. Suppose that $P$ is generating in $\bold R^m$, and that $Q$ contains no affine line. Then $f$ is locally bounded on the interior of $A$, and continuous almost everywhere with respect to the Lebesgue measure on $\bold R^m$. If in addition $P$ is a closed halfspace and if $A$ is connected, then $f$ is continuous if and only if the range $f(A)$ is connected.
@article{118963, author = {Boris Lavri\v c}, title = {Continuity of order-preserving functions}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {38}, year = {1997}, pages = {645-655}, zbl = {0942.26022}, mrnumber = {1601672}, language = {en}, url = {http://dml.mathdoc.fr/item/118963} }
Lavrič, Boris. Continuity of order-preserving functions. Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) pp. 645-655. http://gdmltest.u-ga.fr/item/118963/
Continuity properties of Paretian utility, Internat. Econom. Rev. 5 (1964), 285-293. (1964)
Utility Theory for Decision Making, J. Wiley and Sons, New York, London, Sidney, Toronto, 1970. | MR 0264810
Ordered linear spaces, Lecture Notes in Math., Vol. 141, Springer-Verlag, Berlin, Heidelberg, New York, 1970. | MR 0438077
Continuity of monotone functions, Arch. Math. 29 (1993), 1-4. (1993) | MR 1242622
Convex Analysis, Princeton Univ. Press, Princeton, N.J., 1972. | MR 1451876
Convexity and Optimization in Finite Dimensions I, Springer-Verlag, Berlin, 1970. | MR 0286498