How restrictive is topological dynamics?
Iwanik, Anzelm
Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997), p. 563-569 / Harvested from Czech Digital Mathematics Library

Let $T$ be a permutation of an abstract set $X$. In ZFC, we find a necessary and sufficient condition it terms of cardinalities of the $T$-orbits that allows us to topologize $(X,T)$ as a topological dynamical system on a compact Hausdorff space. This extends an early result of H. de Vries concerning compact metric dynamical systems. An analogous result is obtained for ${\bold Z}^2$-actions without periodic points.

Publié le : 1997-01-01
Classification:  54H20
@article{118954,
     author = {Anzelm Iwanik},
     title = {How restrictive is topological dynamics?},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {38},
     year = {1997},
     pages = {563-569},
     zbl = {0938.54036},
     mrnumber = {1485077},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118954}
}
Iwanik, Anzelm. How restrictive is topological dynamics?. Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) pp. 563-569. http://gdmltest.u-ga.fr/item/118954/

Edelstein M. On the representation of mappings of compact metrizable spaces as restrictions of linear transformations, Canad. J. Math 22 (1970), 372-375. (1970) | MR 0263040 | Zbl 0195.24604

Iwanik A. Period structure for pointwise periodic isometries of continua, Acta Univ. Carolin. - Math. Phys. 29 2 (1988), 19-21. (1988) | MR 0983446 | Zbl 0674.54020

Iwanik A.; Janos L.; Kowalski Z. Periods in equicontinuous topological dynamical systems, in: Nonlinear Analysis, Th. M. Rassias Ed., World Scientific Publ. Co. Singapore, 1987, pp.355-365. | MR 0934109 | Zbl 0696.54028

Janos L. Compactification and linearization of abstract dynamical systems, preprint. | MR 1489853 | Zbl 0928.54036

Kowalski Z.S. A characterization of periods in equicontinuous topological dynamical systems, Bull. Polish Ac. Sc. 38 (1990), 121-124. (1990) | MR 1194254 | Zbl 0769.54044

De Vries H. Compactification of a set which is mapped onto itself, Bull. Acad. Polon. Sci. 5 (1957), 943-945. (1957) | MR 0092144 | Zbl 0078.04202