Theorem. In ZF (i.e., Zermelo-Fraenkel set theory without the axiom of choice) the following conditions are equivalent: (1) $\Bbb N$ is a Lindelöf space, (2) $\Bbb Q$ is a Lindelöf space, (3) $\Bbb R$ is a Lindelöf space, (4) every topological space with a countable base is a Lindelöf space, (5) every subspace of $\Bbb R$ is separable, (6) in $\Bbb R$, a point $x$ is in the closure of a set $A$ iff there exists a sequence in $A$ that converges to $x$, (7) a function $f:\Bbb R\rightarrow \Bbb R$ is continuous at a point $x$ iff $f$ is sequentially continuous at $x$, (8) in $\Bbb R$, every unbounded set contains a countable, unbounded set, (9) the axiom of countable choice holds for subsets of $\Bbb R$.
@article{118952, author = {Horst Herrlich and George E. Strecker}, title = {When is $\bold N$ Lindel\"of?}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {38}, year = {1997}, pages = {553-556}, zbl = {0938.54008}, mrnumber = {1485075}, language = {en}, url = {http://dml.mathdoc.fr/item/118952} }
Herrlich, Horst; Strecker, George E. When is $\bold N$ Lindelöf?. Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) pp. 553-556. http://gdmltest.u-ga.fr/item/118952/
Countable choice and pseudometric spaces, in preparation. | Zbl 0922.03068
Compactness and the Axiom of Choice, Appl. Categ. Struct. 4 (1996), 1-14. (1996) | MR 1393958 | Zbl 0881.54027
Maximal Filters, continuity, and choice principles, to appear in Quaestiones Math. | MR 1625478
The axiom of choice and two definitions of continuity, Bulletin de l'Acad. Polonaise des Sciences, Ser. Math. 13 (1965), 699-704. (1965) | MR 0195711 | Zbl 0252.02059
Eine Bemerkung zum Auswahlaxiom, Časopis pro pěstování matematiky 9 (1968), 30-31. (1968) | MR 0233706 | Zbl 0167.27402
Sur le rôle de l'axiome de M. Zermelo dans l'Analyse moderne, Compt. Rendus Hebdomadaires des Séances de l'Academie des Sciences, Paris 193 (1916), 688-691. (1916)
L'axiome de M. Zermelo et son rôle dans la théorie des ensembles et l'analyse, Bulletin de l'Académie des Sciences de Cracovie, Classe des Sciences Math., Sér. A (1918), 97-152. (1918)