We partially strengthen a result of Shelah from [Sh] by proving that if $\kappa =\kappa ^{\omega }$ and $P$ is a CCC partial order with e.g. $|P|\leq \kappa ^{+\omega }$ (the $\omega ^{\text{th}}$ successor of $\kappa $) and $|P|\leq 2^{\kappa }$ then $P$ is $\kappa $-linked.
@article{118950, author = {Andr\'as Hajnal and Istv\'an Juh\'asz and Zolt\'an Szentmikl\'ossy}, title = {On CCC boolean algebras and partial orders}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {38}, year = {1997}, pages = {537-544}, zbl = {0938.06001}, mrnumber = {1485073}, language = {en}, url = {http://dml.mathdoc.fr/item/118950} }
Hajnal, András; Juhász, István; Szentmiklóssy, Zoltán. On CCC boolean algebras and partial orders. Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) pp. 537-544. http://gdmltest.u-ga.fr/item/118950/
Some theorems of set-theory and their topological consequences, Fund. Math. 57 (1965), 275-286. (1965) | MR 0196693 | Zbl 0137.41904
Splitting strongly almost disjoint families, Transactions of the AMS 295 (1986), 369-387. (1986) | MR 0831204
Compact CCC spaces of prescribed density, in: Combinatorics, P. Erdös is 80, Bolyai Soc. Math. Studies, Keszthely, 1993, pp.239-252. | MR 1249715
Set Theory, North Holland, Amsterdam, 1979. | MR 0756630 | Zbl 0960.03033
Remarks on Boolean algebras, Algebra Universalis 11 (1980), 77-89. (1980) | MR 0593014 | Zbl 0451.06015