\font\jeden=rsfs7 \font\dva=rsfs10 We study several choice principles for systems of finite character and prove their equivalence to the Prime Ideal Theorem in ZF set theory without Axiom of Choice, among them the Intersection Lemma (stating that if $\text{\jeden S}$ is a system of finite character then so is the system of all collections of finite subsets of $\bigcup \text{\jeden S}$ meeting a common member of $\text{\jeden S}$), the Finite Cutset Lemma (a finitary version of the Teichm"uller-Tukey Lemma), and various compactness theorems. Several implications between these statements remain valid in ZF even if the underlying set is fixed. Some fundamental algebraic and order-theoretical facts like the Artin-Schreier Theorem on the orderability of real fields, the Erdös-De Bruijn Theorem on the colorability of infinite graphs, and Dilworth's Theorem on chain-decompositions for posets of finite width, are easy consequences of the Intersection Lemma or of the Finite Cutset Lemma.
@article{118949, author = {Marcel Ern\'e}, title = {Prime Ideal Theorems and systems of finite character}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {38}, year = {1997}, pages = {513-536}, zbl = {0938.03072}, mrnumber = {1485072}, language = {en}, url = {http://dml.mathdoc.fr/item/118949} }
Erné, Marcel. Prime Ideal Theorems and systems of finite character. Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) pp. 513-536. http://gdmltest.u-ga.fr/item/118949/
Algebraische Konstruktion reeller Körper, Abh. Math. Sem. Hamb. Univ. 5 (1926), 85-99. (1926)
Theory of $x$-ideals, Acta Math. 107 (1962), 1-52. (1962) | MR 0148773 | Zbl 0108.26002
The power of the ultrafilter theorem, J. London Math. Soc. (2) 27 (1983), 193-202. (1983) | MR 0692524 | Zbl 0523.03037
Prime elements from prime ideals, Order 2 (1985), 211-213. (1985) | MR 0815866 | Zbl 0576.06010
A new proof that ``Krull implies Zorn'', Mathematical Logic Quarterly 40 (1994), 478-480. (1994) | MR 1301940 | Zbl 0813.03032
On Krull's separation lemma, Order 10 (1993), 253-260. (1993) | MR 1267191 | Zbl 0795.06005
Algebraic Theory of Lattices, Prentice-Hall, N.J., 1973. | Zbl 0494.06001
Introduction to Lattices and Order, Cambridge University Press, 1990. | MR 1058437 | Zbl 1002.06001
A colour problem for infinite graphs and a problem in the theory of relations, Indag. Math. 13 (1951), 371-373. (1951) | MR 0046630
Mathematical Logic, Springer-Verlag, New York, 1991. | MR 1278260 | Zbl 1139.03001
Eine Konstruktion von Modellerweiterungen, Z. Math. Logik Grundlagen Math. 5 (1959), 126-131. (1959) | MR 0109124 | Zbl 0087.00904
Semidistributivity, prime ideals and the subbase lemma, Rend. Circ. Math. Palermo II -XLI (1992), 241-250. (1992) | MR 1196618
A primrose path from Krull to Zorn, Comment. Math. Univ. Carolinae 36 (1995), 123-126. (1995) | MR 1334420
Prime ideal theorems for universal algebras, Preprint Univ. Hannover, 1995.
Convergence and continuity in partially ordered sets and semilattices, in: R.-E. Hoffmann and K.H. Hofmann (eds.), Continuous lattices and their applications, Lecture Notes in Pure and Appl. Math. 101, Marcel Dekker Inc., New York-Basel, 1985, pp.9-40. | MR 0825993
Topology in lattices, Trans. Amer. Math. Soc. 51 (1942), 569-583. (1942) | MR 0006496 | Zbl 0061.39305
Partially Ordered Algebraic Systems, Pergamon Press, Oxford, 1963. | MR 0171864 | Zbl 0137.02001
Grundstrukturen der Analysis I, Akademie-Verlag and Birkhäuser Verlag, Berlin-Basel, 1977. | MR 0519344
A Compendium of Continuous Lattices, Springer-Verlag, Berlin-Heidelberg-New York, 1980. | MR 0614752 | Zbl 0452.06001
General Lattice Theory, Birkhäuser, Basel, 1978. | MR 0504338
The independence of the axiom of choice from the Boolean prime ideal theorem, Fund. Math. 55 (1964), 57-66. (1964) | MR 0164891 | Zbl 0151.01002
The Boolean prime ideal theorem does not imply the axiom of choice, in: D. Scott (ed.), Axiomatic set theory, Proc. Symp. Pure Math., Univ. of California, Los Angeles 13 (1), (1967), 83-124. | MR 0284328
Cardinals $m$ such that $2m=m$, Bull. Amer. Math. Soc. 76 (1970), 487-490. (1970) | MR 0268034 | Zbl 0223.02055
The completeness of the first order functional calculus, J. Symbolic Logic 14 (1949), 159-166. (1949) | MR 0033781 | Zbl 0034.00602
Krull implies Zorn, J. London Math. Soc. 19 (1979), 285-287. (1979) | MR 0533327 | Zbl 0394.03045
The Axiom of Choice, North-Holland, Amsterdam-New York, 1973. | MR 0396271 | Zbl 0259.02052
Almost maximal ideals, Fund. Math. 123 (1984), 197-209. (1984) | MR 0761975 | Zbl 0552.06004
The Tychonoff product theorem implies the axiom of choice, Fund. Math. 37 (1950), 75-76. (1950) | MR 0039982 | Zbl 0039.28202
Zorn's theorem and the existence of maximal filters and ideals in distributive lattices, Rev. Un. Mat. Argentina 18 (1958), 160-164. (1958) | MR 0132707
Coloring infinite graphs and the Boolean prime ideal theorem, Israel J. Math. 9 (1971), 420-429. (1971) | MR 0288051
Remarks on a paper by J. Mycielski, Acta Math. Acad. Sci. Hungar. 14 (1963), 125-130. (1963) | MR 0146088
0n the application of Tychonoff's theorem in mathematical proofs, Fund. Math. 38 (1951), 233-237. (1951) | MR 0048795
Effectiveness of the representation theory for Boolean algebras, Fund Math. 41 (1954), 49-56. (1954) | MR 0065527
Zermelo's Axiom of Choice - its Origins, Development and Influence, Springer-Verlag, New York-Heidelberg-Berlin, 1982. | MR 0679315 | Zbl 0497.01005
Some remarks and problems on the colouring of infinite graphs and the theorem of Kuratowski, Acta Math. Acad. Sci. Hung. 12 (1961), 125-129. (1961) | MR 0130686
Topological equivalents of the Tihonov theorem, Dokl. Akad. Nauk SSSR 184 (1969), 38-39 Soviet Math. Dokl. 10 (1969), 33-34. (1969) | MR 0238266
Variants of Rado's selection lemma and their applications, Math. Nachr. 79 (1977), 145-165. (1977) | MR 0476530 | Zbl 0359.02066
Semiprime ideals in general lattices, J. Pure and Appl. Algebra 56 (1989), 105-118. (1989) | MR 0979666 | Zbl 0665.06006
Equivalents of the Axiom of Choice, II, North-Holland, Amsterdam-New York-Oxford, 1985. | MR 0798475
Some topological theorems equivalent to the prime ideal theorem, Bull. Amer. Math. Soc. 60 (1954), 389 (Abstract). (1954)
An independence result concerning the axiom of choice, Ann. Math. Logic 8 (1975), 1-184. (1975) | MR 0366668 | Zbl 0306.02060
Prime ideals for rings, lattices and Boolean algebras, Bull. Amer. Math. Soc. 60 (1954), 390 (Abstract). (1954)
Prime ideal theorems for Boolean algebras and the axiom of choice. Prime ideal theorems for set algebras and ordering principles. Prime ideal theorems for set algebras and the axiom of choice, Bull. Amer. Math. Soc. 60 (1954), 390-391 (Abstracts). (1954)
Braucht der Algebraiker das Auswahlaxiom?, Deutsche Math. 4 (1939), 567-577. (1939) | MR 0000212
Convergence and uniformity in topology, Annals of Math. Studies 2, Princeton, 1940. | MR 0002515 | Zbl 0025.09102
A set-theoretical equivalent of the prime ideal theorem for Boolean algebras, Fund. Math. 89 (1975), 151-153. (1975) | MR 0382003 | Zbl 0363.04010