Prime Ideal Theorems and systems of finite character
Erné, Marcel
Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997), p. 513-536 / Harvested from Czech Digital Mathematics Library

\font\jeden=rsfs7 \font\dva=rsfs10 We study several choice principles for systems of finite character and prove their equivalence to the Prime Ideal Theorem in ZF set theory without Axiom of Choice, among them the Intersection Lemma (stating that if $\text{\jeden S}$ is a system of finite character then so is the system of all collections of finite subsets of $\bigcup \text{\jeden S}$ meeting a common member of $\text{\jeden S}$), the Finite Cutset Lemma (a finitary version of the Teichm"uller-Tukey Lemma), and various compactness theorems. Several implications between these statements remain valid in ZF even if the underlying set is fixed. Some fundamental algebraic and order-theoretical facts like the Artin-Schreier Theorem on the orderability of real fields, the Erdös-De Bruijn Theorem on the colorability of infinite graphs, and Dilworth's Theorem on chain-decompositions for posets of finite width, are easy consequences of the Intersection Lemma or of the Finite Cutset Lemma.

Publié le : 1997-01-01
Classification:  03E25,  08A30,  13B25,  13B30
@article{118949,
     author = {Marcel Ern\'e},
     title = {Prime Ideal Theorems and systems of finite character},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {38},
     year = {1997},
     pages = {513-536},
     zbl = {0938.03072},
     mrnumber = {1485072},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118949}
}
Erné, Marcel. Prime Ideal Theorems and systems of finite character. Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) pp. 513-536. http://gdmltest.u-ga.fr/item/118949/

Artin E.; Schreier O. Algebraische Konstruktion reeller Körper, Abh. Math. Sem. Hamb. Univ. 5 (1926), 85-99. (1926)

Aubert K.E. Theory of $x$-ideals, Acta Math. 107 (1962), 1-52. (1962) | MR 0148773 | Zbl 0108.26002

Banaschewski B. The power of the ultrafilter theorem, J. London Math. Soc. (2) 27 (1983), 193-202. (1983) | MR 0692524 | Zbl 0523.03037

Banaschewski B. Prime elements from prime ideals, Order 2 (1985), 211-213. (1985) | MR 0815866 | Zbl 0576.06010

Banaschewski B. A new proof that ``Krull implies Zorn'', Mathematical Logic Quarterly 40 (1994), 478-480. (1994) | MR 1301940 | Zbl 0813.03032

Banaschewski B.; Erné M. On Krull's separation lemma, Order 10 (1993), 253-260. (1993) | MR 1267191 | Zbl 0795.06005

Crawley P.; Dilworth R.P. Algebraic Theory of Lattices, Prentice-Hall, N.J., 1973. | Zbl 0494.06001

Davey B.A.; Priestley H.A. Introduction to Lattices and Order, Cambridge University Press, 1990. | MR 1058437 | Zbl 1002.06001

De Bruijn N.G.; Erdös P. A colour problem for infinite graphs and a problem in the theory of relations, Indag. Math. 13 (1951), 371-373. (1951) | MR 0046630

Ebbinghaus H.-D.; Flum J.; Thomas W. Mathematical Logic, Springer-Verlag, New York, 1991. | MR 1278260 | Zbl 1139.03001

Engeler E. Eine Konstruktion von Modellerweiterungen, Z. Math. Logik Grundlagen Math. 5 (1959), 126-131. (1959) | MR 0109124 | Zbl 0087.00904

Erné M. Semidistributivity, prime ideals and the subbase lemma, Rend. Circ. Math. Palermo II -XLI (1992), 241-250. (1992) | MR 1196618

Erné M. A primrose path from Krull to Zorn, Comment. Math. Univ. Carolinae 36 (1995), 123-126. (1995) | MR 1334420

Erné M. Prime ideal theorems for universal algebras, Preprint Univ. Hannover, 1995.

Erné M.; Gatzke H. Convergence and continuity in partially ordered sets and semilattices, in: R.-E. Hoffmann and K.H. Hofmann (eds.), Continuous lattices and their applications, Lecture Notes in Pure and Appl. Math. 101, Marcel Dekker Inc., New York-Basel, 1985, pp.9-40. | MR 0825993

Frink O. Topology in lattices, Trans. Amer. Math. Soc. 51 (1942), 569-583. (1942) | MR 0006496 | Zbl 0061.39305

Fuchs L. Partially Ordered Algebraic Systems, Pergamon Press, Oxford, 1963. | MR 0171864 | Zbl 0137.02001

Gähler W. Grundstrukturen der Analysis I, Akademie-Verlag and Birkhäuser Verlag, Berlin-Basel, 1977. | MR 0519344

Gierz G.; Hofmann K.H.; Keimel K.; Lawson J.D.; Mislove M.; Scott D.S. A Compendium of Continuous Lattices, Springer-Verlag, Berlin-Heidelberg-New York, 1980. | MR 0614752 | Zbl 0452.06001

Grätzer G. General Lattice Theory, Birkhäuser, Basel, 1978. | MR 0504338

Halpern J. The independence of the axiom of choice from the Boolean prime ideal theorem, Fund. Math. 55 (1964), 57-66. (1964) | MR 0164891 | Zbl 0151.01002

Halpern J.; Lévy A. The Boolean prime ideal theorem does not imply the axiom of choice, in: D. Scott (ed.), Axiomatic set theory, Proc. Symp. Pure Math., Univ. of California, Los Angeles 13 (1), (1967), 83-124. | MR 0284328

Halpern D.; Howard P.E. Cardinals $m$ such that $2m=m$, Bull. Amer. Math. Soc. 76 (1970), 487-490. (1970) | MR 0268034 | Zbl 0223.02055

Henkin L. The completeness of the first order functional calculus, J. Symbolic Logic 14 (1949), 159-166. (1949) | MR 0033781 | Zbl 0034.00602

Hodges W. Krull implies Zorn, J. London Math. Soc. 19 (1979), 285-287. (1979) | MR 0533327 | Zbl 0394.03045

Jech T. The Axiom of Choice, North-Holland, Amsterdam-New York, 1973. | MR 0396271 | Zbl 0259.02052

Johnstone P. Almost maximal ideals, Fund. Math. 123 (1984), 197-209. (1984) | MR 0761975 | Zbl 0552.06004

Kelley J.L. The Tychonoff product theorem implies the axiom of choice, Fund. Math. 37 (1950), 75-76. (1950) | MR 0039982 | Zbl 0039.28202

Klimovsky G. Zorn's theorem and the existence of maximal filters and ideals in distributive lattices, Rev. Un. Mat. Argentina 18 (1958), 160-164. (1958) | MR 0132707

Läuchli H. Coloring infinite graphs and the Boolean prime ideal theorem, Israel J. Math. 9 (1971), 420-429. (1971) | MR 0288051

Lévy A. Remarks on a paper by J. Mycielski, Acta Math. Acad. Sci. Hungar. 14 (1963), 125-130. (1963) | MR 0146088

Los J.; Ryll-Nardzewski C. 0n the application of Tychonoff's theorem in mathematical proofs, Fund. Math. 38 (1951), 233-237. (1951) | MR 0048795

Los J.; Ryll-Nardzewski C. Effectiveness of the representation theory for Boolean algebras, Fund Math. 41 (1954), 49-56. (1954) | MR 0065527

Moore G.H. Zermelo's Axiom of Choice - its Origins, Development and Influence, Springer-Verlag, New York-Heidelberg-Berlin, 1982. | MR 0679315 | Zbl 0497.01005

Mycielski J. Some remarks and problems on the colouring of infinite graphs and the theorem of Kuratowski, Acta Math. Acad. Sci. Hung. 12 (1961), 125-129. (1961) | MR 0130686

Parovičenko I.I. Topological equivalents of the Tihonov theorem, Dokl. Akad. Nauk SSSR 184 (1969), 38-39 Soviet Math. Dokl. 10 (1969), 33-34. (1969) | MR 0238266

Rav Y. Variants of Rado's selection lemma and their applications, Math. Nachr. 79 (1977), 145-165. (1977) | MR 0476530 | Zbl 0359.02066

Rav Y. Semiprime ideals in general lattices, J. Pure and Appl. Algebra 56 (1989), 105-118. (1989) | MR 0979666 | Zbl 0665.06006

Rubin H.; Rubin J.E. Equivalents of the Axiom of Choice, II, North-Holland, Amsterdam-New York-Oxford, 1985. | MR 0798475

Rubin H.; Scott D.S. Some topological theorems equivalent to the prime ideal theorem, Bull. Amer. Math. Soc. 60 (1954), 389 (Abstract). (1954)

Sageev G. An independence result concerning the axiom of choice, Ann. Math. Logic 8 (1975), 1-184. (1975) | MR 0366668 | Zbl 0306.02060

Scott D.S. Prime ideals for rings, lattices and Boolean algebras, Bull. Amer. Math. Soc. 60 (1954), 390 (Abstract). (1954)

Tarski A. Prime ideal theorems for Boolean algebras and the axiom of choice. Prime ideal theorems for set algebras and ordering principles. Prime ideal theorems for set algebras and the axiom of choice, Bull. Amer. Math. Soc. 60 (1954), 390-391 (Abstracts). (1954)

Teichmüller O. Braucht der Algebraiker das Auswahlaxiom?, Deutsche Math. 4 (1939), 567-577. (1939) | MR 0000212

Tukey J.W. Convergence and uniformity in topology, Annals of Math. Studies 2, Princeton, 1940. | MR 0002515 | Zbl 0025.09102

Van Benthem J.F.A.K. A set-theoretical equivalent of the prime ideal theorem for Boolean algebras, Fund. Math. 89 (1975), 151-153. (1975) | MR 0382003 | Zbl 0363.04010