A continuous multiparameter version of Chacon's vector valued ergodic theorem is proved.
@article{118944, author = {Shigeru Hasegawa and Ryotaro Sato}, title = {On a $d$-parameter ergodic theorem for continuous semigroups of operators satisfying norm conditions}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {38}, year = {1997}, pages = {453-462}, zbl = {0937.47009}, mrnumber = {1485067}, language = {en}, url = {http://dml.mathdoc.fr/item/118944} }
Hasegawa, Shigeru; Sato, Ryotaro. On a $d$-parameter ergodic theorem for continuous semigroups of operators satisfying norm conditions. Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) pp. 453-462. http://gdmltest.u-ga.fr/item/118944/
Sur les opérateurs positifs à moyennes bornées, C.R. Acad. Sci. Paris Sér. I Math. 298 (1984), 103-106. (1984) | MR 0741070
An ergodic theorem for operators satisfying norm conditions, J. Math. Mech. 11 (1962), 165-172. (1962) | MR 0147619 | Zbl 0115.33804
Linear Operators. Part I: General Theory, Interscience, New York, 1958. | MR 1009162 | Zbl 0635.47001
On $d$-parameter pointwise ergodic theorems in $L_1$, Proc. Amer. Math. Soc. 123 (1995), 3455-3465. (1995) | MR 1249881
Vector valued ergodic theorems for a one-parameter semigroup of linear operators, Tôhoku Math. J. 30 (1978), 95-106. (1978) | MR 0467351 | Zbl 0377.47008
Ergodic Theorems, de Gruyter, Berlin, 1985. | MR 0797411 | Zbl 0649.47042
Vector valued differentiation theorems for multiparameter additive processes in $L_p$ spaces, submitted for publication. | Zbl 0915.47012
Local ergodic theorems for $n$-parameter semigroups of operators, Lecture Notes in Math., vol. 160, Springer, Berlin, 1970, pp.262-278. | MR 0268357 | Zbl 0204.45406