Nonlinear homogeneous eigenvalue problem in $R^N$: nonstandard variational approach
Drábek, Pavel ; Moudan, Zakaria ; Touzani, Abdelfettah
Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997), p. 421-431 / Harvested from Czech Digital Mathematics Library

The nonlinear eigenvalue problem for p-Laplacian $$ \cases - \operatorname{div} (a(x) |\nabla u|^{p-2} \nabla u) = \lambda g (x) |u|^{p-2} u \text{ in } \Bbb R^N, \ u >0 \text{ in } \Bbb R^N, \mathop{\lim}\limits_{|x|\to \infty} u(x) = 0, \endcases $$ is considered. We assume that $1 < p < N$ and that $g$ is indefinite weight function. The existence and $C^{1, \alpha}$-regularity of the weak solution is proved.

Publié le : 1997-01-01
Classification:  35J65,  35J70,  35P30,  49J40,  49R50
@article{118942,
     author = {Pavel Dr\'abek and Zakaria Moudan and Abdelfettah Touzani},
     title = {Nonlinear homogeneous eigenvalue problem in $R^N$: nonstandard variational approach},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {38},
     year = {1997},
     pages = {421-431},
     zbl = {0940.35150},
     mrnumber = {1485065},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118942}
}
Drábek, Pavel; Moudan, Zakaria; Touzani, Abdelfettah. Nonlinear homogeneous eigenvalue problem in $R^N$: nonstandard variational approach. Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) pp. 421-431. http://gdmltest.u-ga.fr/item/118942/

Adams R.A. Sobolev Spaces, Academic Press, 1975. | MR 0450957 | Zbl 1098.46001

Allegretto W.; Huang Y.X. Eigenvalues of the indefinite weight p-Laplacian in weighted spaces, Funkc. Ekvac. 38 (1995), 233-242. (1995) | MR 1356326 | Zbl 0922.35114

Drábek P. Nonlinear eigenvalue for p-Laplacian in $\Bbb R^N$, Math. Nach 173 (1995), 131-139. (1995) | MR 1336957

Drábek, Huang Y.X. Bifurcation problems for the p-Laplacian in $\Bbb R^N$, to appear in Trans. of AMS.

Fleckinger J.; Manasevich R.F.; Stavrakakis N.M.; De Thelin F. Principal eigenvalues for some quasilinear elliptic equations on $\Bbb R^N$, preprint.

Huang Y.X. Eigenvalues of the p-Laplacian in $\Bbb R^N$ with indefinite weight, Comment. Math. Univ. Carolinae 36 (1995), 519-527. (1995) | MR 1364493

Lindqvist P. On the equation ${div} (|\nabla u|^{p-2} \nabla u) + \lambda |u|^{p-2} u = 0$, Proc. Amer. Math. Society 109 (1990), 157-164. (1990) | MR 1007505 | Zbl 0714.35029

Serin J. Local behavior of solutions of quasilinear equations, Acta Math. 111 (1964), 247-302. (1964) | MR 0170096

Tolkdorf P. Regularity for a more general class of quasilinear elliptic equations, J. Diff. Equations 51 (1984), 126-150. (1984) | MR 0727034

Trudinger N.S. On Harnack type inequalities and their applications to quasilinear elliptic equations, Comm. Pure. Appl. Math. 20 (1967), 721-747. (1967) | MR 0226198