We show that there exists a closed non-$\sigma$-porous set of extended uniqueness. We also give a new proof of Lyons' theorem, which shows that the class of $H^{(n)}$-sets is not large in $U_0$.
@article{118931, author = {Miroslav Zelen\'y}, title = {Sets of extended uniqueness and $\sigma$-porosity}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {38}, year = {1997}, pages = {337-341}, zbl = {0894.28001}, mrnumber = {1455500}, language = {en}, url = {http://dml.mathdoc.fr/item/118931} }
Zelený, Miroslav. Sets of extended uniqueness and $\sigma$-porosity. Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) pp. 337-341. http://gdmltest.u-ga.fr/item/118931/
Thin sets of harmonic analysis and infinite combinatorics, Real Analysis Exchange 20.2 (1994-95), 454-509. (1994-95) | MR 1348075
Ensembles boréliens d'unicité et d'unicité au sens large, Ann. Inst. Fourier (Grenoble) 37 (1987), 217-239. (1987) | MR 0916281
Boundary properties of arbitrary functions (in Russian), Izv. Akad. Nauk. SSSR Ser. Mat. 31 (1967), 3-14. (1967) | MR 0217297
Descriptive Set Theory and the Structure of Sets of Uniqueness, Cambridge U. Press, Cambridge (1987). (1987) | MR 0953784 | Zbl 0642.42014
The size of some classes of thin sets, Studia Math. 86.1 (1987), 59-78. (1987) | MR 0887312 | Zbl 0628.43006
Construction of a finite Borel measure with $\sigma$-porous sets as null sets, Real Analysis Exchange 12 (1986-87), 349-353. (1986-87) | MR 0873903 | Zbl 0649.28005
Sets of type $H^{(s)}$ are $\sigma$-bilaterally porous, unpublished.
Sets of $\sigma$-porosity and sets of $\sigma$-porosity(q), Časopis Pěst. Mat. 101 (1976), 350-359. (1976) | MR 0457731 | Zbl 0341.30026
Porosity and $\sigma$-porosity, Real Analysis Exchange 13 (1987-88), 314-350. (1987-88) | MR 0943561
A note on $\sigma$-porous sets, Real Analysis Exchange 17.1 (1991-92), 18. (1991-92)