Binormality of Banach spaces
Holický, Petr
Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997), p. 279-282 / Harvested from Czech Digital Mathematics Library

We study binormality, a separation property of spaces endowed with two topologies known in the real analysis as the Luzin-Menchoff property. The main object of our interest are Banach spaces with their norm and weak topologies. We show that every separable Banach space is binormal and the space $\ell^{\infty}$ is not binormal.

Publié le : 1997-01-01
Classification:  46B20,  46B28,  54E55
@article{118926,
     author = {Petr Holick\'y},
     title = {Binormality of Banach spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {38},
     year = {1997},
     pages = {279-282},
     zbl = {0886.46012},
     mrnumber = {1455495},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118926}
}
Holický, Petr. Binormality of Banach spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) pp. 279-282. http://gdmltest.u-ga.fr/item/118926/

Jayne J.E.; Namioka I.; Rogers C.A. Fragmentability and $\sigma$-fragmentability, Fund. Math. (1993), 143 207-220. (1993) | MR 1247801 | Zbl 0801.46011

Kelly J.C. Bitopological spaces, Proc. London Math. Soc. 13 (1963), 71-89. (1963) | MR 0143169 | Zbl 0107.16401

Lukeš J.; Malý J.; Zajíček L. Fine Topology Methods in Real Analysis and Potential Theory, Lecture Notes in Mathematics 1189 (1986), Springer-Verlag Berlin, Heidelberg, New York, London, Paris, Tokyo. (1986) | MR 0861411