It is shown that every strongly lattice norm on $c_0(\Gamma)$ can be approximated by $C^\infty$ smooth norms. We also show that there is no lattice and G\^ateaux differentiable norm on $C_0[0,\omega_1]$.
@article{118924, author = {Mari\'an J. Fabi\'an and Petr H\'ajek and V\'aclav Zizler}, title = {A note on lattice renormings}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {38}, year = {1997}, pages = {263-272}, zbl = {0886.46006}, mrnumber = {1455493}, language = {en}, url = {http://dml.mathdoc.fr/item/118924} }
Fabián, Marián J.; Hájek, Petr; Zizler, Václav. A note on lattice renormings. Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) pp. 263-272. http://gdmltest.u-ga.fr/item/118924/
Analytic and polyhedral approximations of convex bodies in separable polyhedral Banach spaces, Israel J. Math., to appear. | MR 1639743
Analytic and $C^k$-smooth approximations of norms in separable Banach spaces, Studia Math., to appear. | MR 1398174
Smoothness and renormings in Banach spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics 64, 1993. | MR 1211634 | Zbl 0782.46019
Topology, Allyn and Bacon Inc., 1966. | MR 0193606 | Zbl 0397.54003
Normes infiniment differentiables sur certains espaces de Banach, C.R. Acad. Sci. Paris, t. 315, Serie I (1992), 1175-1178. | MR 1194512 | Zbl 0788.46008
Trees in renormings theory, to appear. | MR 1674838