The purpose of this paper is to investigate identities satisfied by centralizers on prime and semiprime rings. We prove the following result: Let $R$ be a noncommutative prime ring of characteristic different from two and let $S$ and $T$ be left centralizers on $R$. Suppose that $[S(x),T(x)]S(x)+S(x)[S(x),T(x)]=0$ is fulfilled for all $x\in R$. If $S\neq 0$ $(T\neq 0)$ then there exists $\lambda $ from the extended centroid of $R$ such that $T=\lambda S$ $(S=\lambda T)$.
@article{118920, author = {Joso Vukman}, title = {Centralizers on prime and semiprime rings}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {38}, year = {1997}, pages = {231-240}, zbl = {0889.16016}, mrnumber = {1455489}, language = {en}, url = {http://dml.mathdoc.fr/item/118920} }
Vukman, Joso. Centralizers on prime and semiprime rings. Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) pp. 231-240. http://gdmltest.u-ga.fr/item/118920/
Jordan derivations on prime rings, Bull. Austral. Math. Soc. 37 (1988), 321-323. (1988) | MR 0943433
Jordan derivations on prime rings, Proc. Amer. Math. Soc. 104 (1988), 1003-1006. (1988) | MR 0929422
On a generalization of the notion of centralizing mappings, Proc. Amer. Math. Soc. 114 (1992), 641-649. (1992) | MR 1072330
Centralizing mappings and derivations in prime rings, Journal of Algebra 156 (1993), 385-394. (1993) | MR 1216475
Commuting traces of biaditive mappings, commutativity-preserving mappings and Lie mappings, Trans. Amer. Math. Soc. 335 (1993), 525-545. (1993) | MR 1069746
Jordan derivations on rings, Proc. Amer. Math. Soc. 53 (1975), 321-324. (1975) | MR 0399182
Jordan derivations on prime rings, Proc. Amer. Math. Soc. 8 (1957), 1104-1110. (1957) | MR 0095864
Rings with involution, Univ. of Chicago Press, Chicago, 1976. | MR 0442017 | Zbl 0495.16007
Prime rings satisfying a generalized polynomial identity, Journal of Algebra 12 (1969), 576-584. (1969) | MR 0238897 | Zbl 0175.03102
Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100. (1957) | MR 0095863
On centralizers of semiprime rings, Comment. Math. Univ. Carolinae 32 (1991), 609-614. (1991) | MR 1159807 | Zbl 0746.16011