Subnormal subgroups possessing connected transversals are briefly discussed.
@article{118919, author = {Tom\'a\v s Kepka and Jon D. Phillips}, title = {Connected transversals to subnormal subgroups}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {38}, year = {1997}, pages = {223-230}, zbl = {0889.20020}, mrnumber = {1455488}, language = {en}, url = {http://dml.mathdoc.fr/item/118919} }
Kepka, Tomáš; Phillips, Jon D. Connected transversals to subnormal subgroups. Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) pp. 223-230. http://gdmltest.u-ga.fr/item/118919/
On loops with cyclic inner mapping groups, Arch. Math. 60 (1993), 233-23. (1993) | MR 1201636
Transversals, commutators and solvability in finite groups, Bolletino U.M.I. 9-A (1995), 203-208. (1995) | MR 1324621 | Zbl 0837.20026
On multiplication groups of loops, J. of Algebra 135 (1990), 112-122. (1990) | MR 1076080 | Zbl 0706.20046
On connected transversals to abelian subgroups in finite groups, Bull. London Math. Soc. 24 (1992), 343-346. (1992) | MR 1165376 | Zbl 0793.20064
On connected transversals to abelian subgroups, Bull. Austral. Math. Soc. 49 (1994), 121-128. (1994) | MR 1262682 | Zbl 0799.20020
Permutation groups, Mathematics Lecture Notes Series, W.A. Benjamin, Inc., New York-Amsterdam, 1966. | MR 0237627 | Zbl 0177.03701
A course in the theory of groups, Graduate Text in Mathematics 80 (1982), Springer-Verlag, New York-Heidelberg-Berlin. | MR 0648604 | Zbl 0836.20001
Multiplication groups of quasigroups, Preprint 603 (1981), Technische Hochschule, Darmstadt.