Suppose that a real nonatomic function space on $[0,1]$ is equipped with two re\-arran\-ge\-ment-invariant norms $\|\cdot\|$ and $|\kern -0.5pt |\kern -0.5pt |\cdot|\kern -0.5pt |\kern -0.5pt |$. We study the question whether or not the fact that $(X,\|\cdot\|)$ is isometric to $(X,|\kern -0.5pt |\kern -0.5pt |\cdot|\kern -0.5pt |\kern -0.5pt |)$ implies that $\|f\|= |\kern -0.5pt |\kern -0.5pt |f|\kern -0.5pt |\kern -0.5pt |$ for all $f$ in $X$. We show that in strictly monotone Orlicz and Lorentz spaces this is equivalent to asking whether or not the norms are defined by equal Orlicz functions, resp\. Lorentz weights. We show that the above implication holds true in most rearrangement-invariant spaces, but we also identify a class of Orlicz spaces where it fails. We provide a complete description of Orlicz functions $\varphi \neq\psi$ with the property that $L_\varphi$ and $L_\psi$ are isometric.
@article{118903, author = {Beata Randrianantoanina}, title = {Isometric classification of norms in rearrangement-invariant function spaces}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {38}, year = {1997}, pages = {73-90}, zbl = {0886.46007}, mrnumber = {1455471}, language = {en}, url = {http://dml.mathdoc.fr/item/118903} }
Randrianantoanina, Beata. Isometric classification of norms in rearrangement-invariant function spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) pp. 73-90. http://gdmltest.u-ga.fr/item/118903/
Rearrangement invariant spaces, Notices Amer. Math. Soc. 26(2):A (1979), 207. (1979)
A rearrangement invariant space isometric to $L_p$ coincides with $L_p$, in: N.J. Kalton and E. Saab, editors, Interaction between Functional Analysis, Harmonic Analysis, and Probability, pp. 13-18, Lect. Notes in Pure Appl. Math. 175, Marcel Dekker, New York, 1995. | MR 1358141
Orlicz spaces which are $L_p$-spaces, Aequationes Math. 48 (1994), 254-261. (1994) | MR 1295094
On the isometries of the Lorentz space $L_{w,p}$, Israel J. Math. 84 (1993), 265-287. (1993) | MR 1244671
Strongly extreme points in Orlicz function spaces, J. Math. Anal. and Appl. 189 (1995), 651-670. (1995) | MR 1312545
Isometries in Musielak-Orlicz spaces II, Studia Math. 104 (1993), 75-89. (1993) | MR 1208040
Surjective isometries of rearrangement-invariant spaces, Quart. J. Math. Oxford 45 (1994), 301-327. (1994) | MR 1295579
Convex Functions and Orlicz Spaces, P. Noordhoff LTD., Groningen, The Netherlands, 1961. | MR 0126722
Banach lattice structures on separable $L_p$-spaces, Proc. Amer. Math. Soc. 54 (1976), 83-89. (1976) | MR 0390743 | Zbl 0317.46027
On the isometries of some function spaces, Pacific J. Math. 8 (1958), 459-466. (1958) | MR 0105017
Elementary isometries of rearrangement invariant spaces, preprint.
Classical Banach Spaces, Vol. 2, Function Spaces, SpringerVerlag, Berlin-Heidelberg-New York, 1979. | MR 0540367
Comparison of Orlicz-Lorentz spaces, Studia Math. 11 (1993), 679-698. (1993) | MR 1199324
A representation of isometries on function spaces, I Prépublication de l'Institut Fourier des Mathématiques, 305, Grenoble, 1995. | Zbl 0905.47023
Groups of isometries of Orlicz spaces, Soviet Math. Dokl. 17 (1976), 432-436. (1976) | Zbl 0345.46028
On the isometric classification of symmetric spaces, Soviet Math. Dokl. 18 (1977), 636-640. (1977) | MR 0442667
Special representations of isometries of function spaces (in Russian), Investigations on the theory of functions of several real variables, Yaroslavl, 1980.