We give necessary and sufficient conditions for the equality $H=W$ in weighted Sobolev spaces. We also establish a Rellich-Kondrachov compactness theorem as well as a Lusin type approximation by Lipschitz functions in weighted Sobolev spaces.
@article{118900, author = {Tero Kilpel\"ainen}, title = {Smooth approximation in weighted Sobolev spaces}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {38}, year = {1997}, pages = {29-35}, zbl = {0886.46035}, mrnumber = {1455468}, language = {en}, url = {http://dml.mathdoc.fr/item/118900} }
Kilpeläinen, Tero. Smooth approximation in weighted Sobolev spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) pp. 29-35. http://gdmltest.u-ga.fr/item/118900/
Extension theorems on weighted Sobolev spaces, Indiana Univ. Math. J. (1992), 41 1027-1076. (1992) | MR 1206339 | Zbl 0767.46025
Les espaces du type de Beppo Levi, Ann. Inst. Fourier 5 (1953-54), 305-370. (1953-54) | MR 0074787 | Zbl 0065.09903
Measure Theory and Fine Properties of Functions, CRC Press Boca Raton (1992). (1992) | MR 1158660 | Zbl 0804.28001
The local regularity of solutions of degenerate elliptic equations, Comm. P.D.E. 7 (1982), 77-116. (1982) | MR 0643158 | Zbl 0498.35042
Sobolev spaces on an arbitrary metric space, Potential Analysis 5 (1996), 403-415. (1996) | MR 1401074
Sobolev meets Poincaré, C.R. Acad. Sci. Paris Sér. I (1995), 320 1211-1215. (1995) | MR 1336257
Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford University Press Oxford (1993). (1993) | MR 1207810
Weighted Sobolev and Poincaré inequalities and quasiregular mappings of polynomial type, Math. Scand. 77 (1995), 251-271. (1995) | MR 1379269 | Zbl 0860.30018
Weighted Sobolev spaces and capacity, Ann. Acad. Sci. Fenn. Ser. A I. Math. 19 (1994), 95-113. (1994) | MR 1246890
Weighted Sobolev Spaces, Wiley New York (1985). (1985) | MR 0802206 | Zbl 0579.35021
How to define reasonably weighted Sobolev spaces, Comment. Math. Univ. Carol. 25 (1984), 537-554. (1984) | MR 0775568 | Zbl 0557.46025
A Lusin type property of Sobolev functions, Indiana Univ. Math. J. 26 (1977), 645-651. (1977) | MR 0450488
$H=W$, Proc. Nat. Acad, Sci. USA 51 (1964), 1055-1056. (1964) | MR 0164252 | Zbl 0123.30501
Harmonic Analysis, Princeton University Press Princeton, New Jersey (1993). (1993) | MR 1232192 | Zbl 0821.42001
Nonlinear potential theory and weighted Sobolev spaces, Thesis, University of Linköping, 1995. | MR 1371571 | Zbl 0949.31006